|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1338197762 |
003 |
OCoLC |
005 |
20231120010657.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
220804s2022 enk o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d SFB
|d OCLCF
|d N$T
|d OCLCQ
|
020 |
|
|
|a 9780323903462
|q (electronic bk.)
|
020 |
|
|
|a 0323903460
|q (electronic bk.)
|
020 |
|
|
|z 9780323852449
|
020 |
|
|
|z 0323852440
|
035 |
|
|
|a (OCoLC)1338197762
|
050 |
|
4 |
|a TJ254.5
|
082 |
0 |
4 |
|a 621.4023
|2 23
|
245 |
0 |
0 |
|a Fundamentals of low emission flameless combustion and its applications
|h [electronic resource] /
|c edited by Seyed Ehsan Hosseini.
|
260 |
|
|
|a London,UK :
|b Academic Press,
|c 2022.
|
300 |
|
|
|a 1 online resource
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Fundamentals of Low Emission Flameless Combustion and Its Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Fossil fuel crisis and global warming -- 1. Introduction -- 2. Fossil fuels combustion emissions -- 3. Emission reduction in combustion systems -- 4. Conclusion -- References -- Chapter 2: Ultra-lean combustion mode -- 1. Introduction -- 2. Basic terminology and characteristics of ultra-lean combustion -- 2.1. Equivalence ratio -- 3. Experimental and numerical studies on ultra-lean combustion mode -- 3.1. Ultra-lean hydrogen flames -- 3.2. Ultra-lean methane flames -- 3.2.1. Heat-recirculating burners -- 3.2.2. Supported laminar flames -- 3.2.3. Turbulent (swirl-stabilized) flames -- 3.2.4. Internal combustion engines -- 3.3. Ultra-lean dimethyl ether flames -- 3.3.1. Laminar ultra-lean flames of preheated dimethyl ether/air mixtures -- 4. Conclusion -- Acknowledgments -- References -- Chapter 3: Historical background of novel flameless combustion -- 1. Introduction -- 2. Exhaust gas recirculation and flameless combustion -- 2.1. Early investigations in flameless combustion -- 3. Modeling aspects of flameless combustion-A brief history -- 4. Importance of geometry selection in flameless combustion -- 5. Flameless combustion of low graded fuels -- 6. Flameless combustion for gas turbines -- 7. Summary -- References -- Chapter 4: High-temperature air flameless combustion -- 1. Fundamentals of flameless combustion -- 1.1. Basic concepts -- 1.2. Flame characteristics -- 1.3. General requirements for operation parameters -- 1.4. Criteria of flameless combustion -- 1.5. General characteristics -- 2. NO formation mechanisms -- 2.1. Thermal NO -- 2.2. Prompt NO -- 2.3. Fuel NO -- 2.4. NO formation via N2O intermediate mechanism -- 2.5. NO reduction by reburning -- 3. Numerical modeling -- 3.1. Standard EDC model.
|
505 |
8 |
|
|a 3.2. Extension of EDC model -- 3.3. New extended EDC model -- 4. Summary -- References -- Chapter 5: Thermodynamic analysis of flameless combustion -- 1. Introduction -- 2. Zero-dimensional modeling of MILD combustion in a WSR -- 2.1. Method of obtaining Tsi and Tex -- 2.2. Identification of MILD combustion regime -- 2.3. Development of Tin-XO2 combustion regime map -- 3. First and second thermodynamic-law analysis of MILD combustion in diffusion flames -- 3.1. Description of mathematical modeling method -- 3.2. Effect of oxidant preheating temperature (Toxi) -- 3.3. Effect of oxidant oxygen concentration (Xo) -- 4. Conclusions -- Acknowledgment -- References -- Chapter 6: Aerodynamics issues and configurations in MILD reactors -- 1. Introduction -- 2. Reactor constraints for MILD combustion -- 3. Externally enhanced MILD reactors -- 4. MILD reactors with internal flows recirculation -- 4.1. Axial flow reactors -- 4.1.1. General background/conceptual map -- 4.1.2. Single reversing (folding) reactor -- 4.1.3. Double reversing (folding) reactor -- 4.1.4. Closed-loop reactor -- 4.2. Transverse flow reactors -- 4.2.1. General background/conceptual map -- 4.2.2. Adjacent inlet/outlet flows -- 4.2.3. Opposite inlet/outlet flows -- 4.2.4. Central inlet/outlet flows -- 4.2.5. Distributed inlet/outlet flows -- 5. Summary and remarks -- References -- Chapter 7: Heat transfer and its influence on MILD combustion -- 1. Introduction -- 2. Methane MILD combustion in a lab-scale furnace -- 2.1. Experimental description -- 2.2. Description of CFD simulation -- 2.2.1. Model description -- 2.2.2. Grid independence check -- 2.2.3. Model validation -- 2.2.4. CFD simulation cases -- 2.3. Comparison between conventional and MILD combustion inside the lab-scale furnace under various Twall -- 2.3.1. Heat transfer behaviors -- 2.3.2. Combustion stability limit.
|
505 |
8 |
|
|a 2.3.3. Temperature and oxygen profile -- 2.3.4. CO emission and burnout efficiency -- 2.3.5. Chemical reaction rate -- 3. Methane MILD combustion in a nonadiabatic perfectly-stirred reactor (PSR) -- 3.1. Combustion regime classification in PSR -- 3.2. Effect of heat loss on combustion regime evolution under different XO2 -- 3.3. Effect of heat loss on combustion regime evolution under different Tin -- 3.4. Effect of diluent types on combustion regime recognition under nonadiabatic conditions -- 4. Conclusions -- Acknowledgment -- References -- Chapter 8: Direct numerical simulations of flameless combustion -- 1. Introduction -- 2. DNS of MILD combustion -- 2.1. DNS of the autoigniting mixing layer -- 2.2. DNS with internal EGR -- 3. Physics of MILD combustion -- 3.1. Inception of MILD combustion: Jet in hot coflow configuration -- 3.2. Inception of MILD combustion: Role of chemical radicals -- 3.3. Ignition and deflagration -- 3.3.1. Combustion mode as balance in the transport equation -- 3.3.2. Combustion mode from chemical explosive mode analysis -- 3.3.3. Summary -- 4. Modeling insights: A priori analysis from DNS -- 4.1. Presumed PDF approach -- 4.2. Partially stirred reactor approach -- 4.3. Flamelet-generated manifold -- 4.4. Discussion -- 5. Conclusions and outlook -- References -- Chapter 9: Large eddy simulation of MILD combustion -- 1. Introduction -- 2. Turbulence-chemistry interaction modeling -- 2.1. Tabulated chemistry models -- 2.1.1. Three-stream FPV model -- 2.1.2. Diluted FPV model -- 2.2. Conditional source-term estimation -- 2.3. Reactor-based models -- 2.3.1. EDC model -- 2.3.2. Partially stirred reactor -- 2.3.3. Implicit combustion closures for LES -- QLFR model -- LFR model -- Implicit models features -- 2.4. Transported probability density function (TPDF)-based models -- 2.4.1. Lagrangian probability density function method.
|
505 |
8 |
|
|a 2.4.2. Multienvironment Eulerian PDF method -- 3. Discussion -- 3.1. Open flame burners -- 3.1.1. Adelaide jet-in-hot-coflow -- 3.1.2. DJHC burner -- Conclusion on the jet-in-hot-coflow burners -- 3.2. Confined flame burners -- 3.2.1. Reverse-flow combustion chamber -- 3.2.2. Cylindrical confined combustor -- 4. Best-practice guidelines for LES of MILD combustion -- 4.1. Boundary conditions -- 4.2. Computational intensity -- 4.3. Postprocessing -- 4.4. DNS data for LES combustion model assessment -- 5. Conclusions -- Acknowledgments -- References -- Chapter 10: Coflow and counterflow burners -- 1. Coflow burners -- 1.1. Free jets coflow burners used in experimental and numerical studies on flameless combustion -- 1.1.1. The jet in hot coflow burner JHC (Dally, 2002) -- Experimental works based on the JHC burner -- Numerical works based on the JHC burner -- 1.1.2. Vitiated coflow burner VCB (Cabra/Dibble, 2000) -- Experimental works based on the VCB burner -- Numerical works based on the VCB burner -- 1.1.3. Delft jet in hot coflow burner DJHC (Oldenhof, 2010) -- Experimental works based on the DJHC burner -- Numerical works based on the DJHC burner -- 1.1.4. Laminar jet in hot coflow LJHC (Sepman, 2012) -- 1.1.5. Distributed and flameless combustion burner DFCB (Duwig, 2012) -- 1.2 RANS-based equations for coflow burners computation in the FC regime -- 1.3. Confined jets coflow burners used in experimental and numerical studies on flameless combustion -- 1.3.1. DLR burner (Meier, 2011) -- 1.3.2. Lisbon Burner 1 (Ve�rssimo, 2011) -- 1.3.3. Lisbon burner 2 (Rebola, 2013) -- 1.3.4. Delft burner (Huang, 2017) -- 1.3.5. Jinan burner (Huang, 2020) -- 2. Counterflow burners -- 2.1. Counterflow burners used in experimental studies on flameless combustion -- 2.1.1. Akita burner (Maruta, 2000) -- 2.1.2. London burner (Goh, 2013).
|
505 |
8 |
|
|a 2.1.3. Tohoku burner (Xing Li, 2014) -- 2.2. Counterflow burners used in numerical studies on flameless combustion -- 2.3. Mathematical formulation for the counterflow (opposed jets) burners -- 3. Conclusion -- References -- Chapter 11: Numerical investigation of the flameless combustion mode of solid fuels -- 1. Introduction -- 2. Conversion of single solid fuel particle during combustion -- 2.1. Particle motion and energy balance -- 2.2. Heating and drying -- 2.3. Devolatilization -- 2.4. Char oxidation -- 3. Turbulence-chemistry interaction -- 4. Modeling of NOX formation and destruction -- 5. Summary -- References -- Chapter 12: Chemical kinetics of flameless combustion -- 1. Flameless combustion paradigm -- 2. Chemical kinetics of MILD combustion -- 2.1. Fundamentals of chemical kinetics -- 2.2. Classification of kinetic models -- 3. Global reaction mechanisms for MILD combustion -- 4. Detailed reaction mechanisms for MILD combustion -- 5. Effect of operating conditions: Kinetics and thermal effects -- 5.1. Kinetics -- 5.1.1. CO2 chemical effects -- 5.1.2. H2O chemical effects -- 5.1.3. Third-body efficiency -- 5.2. Thermal effects -- 5.2.1. Heat capacity -- 5.2.2. Combustion temperature -- 6. Concluding remarks -- Acknowledgments -- References -- Chapter 13: Chemistry of nitrogen oxides (NOx) formation in flameless combustion -- 1. Tackling NOx emissions via flameless combustion -- 2. NOx formation: Mechanisms and chemical kinetics -- 2.1. Thermal NOx -- 2.1.1. N2O route -- 2.1.2. NNH route -- 2.2. Prompt NOx -- 2.3. Fuel NOx -- 2.3.1. Cyanides -- 2.3.2. NH3 -- 3. Chemical effects of NOx at low temperature -- 3.1. CH4/NH3 interactions -- 4. The fate of fuel-N in the flameless regime -- 4.1. HCN -- 4.2. NH3 -- 4.3. Pyrrole -- 5. Conclusions and outlooks -- References.
|
650 |
|
0 |
|a Combustion engineering.
|
650 |
|
0 |
|a Thermodynamics.
|
650 |
|
0 |
|a Sustainable engineering.
|
650 |
|
7 |
|a Combustion engineering.
|2 fast
|0 (OCoLC)fst00869051
|
650 |
|
7 |
|a Sustainable engineering.
|2 fast
|0 (OCoLC)fst01739808
|
650 |
|
7 |
|a Thermodynamics.
|2 fast
|0 (OCoLC)fst01149832
|
700 |
1 |
|
|a Hosseini, Seyed Ehsan.
|
776 |
0 |
8 |
|i Print version:
|z 9780323903462
|
776 |
0 |
8 |
|i Print version:
|z 0323852440
|z 9780323852449
|w (OCoLC)1263023782
|
776 |
0 |
8 |
|i Print version:
|t FUNDAMENTALS OF LOW EMISSION FLAMELESS COMBUSTION AND ITS APPLICATIONS.
|d [S.l.] : ELSEVIER ACADEMIC PRESS, 2022
|z 0323852440
|w (OCoLC)1263023782
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323852449
|z Texto completo
|