Cargando…

Algae and aquatic macrophytes in cities bioremediation, biomass, biofuels and bioproducts /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pandey, Vimal Chandra
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Algae and Aquatic Macrophytes in Cities: Bioremediation, Biomass, Biofuels and Bioproducts
  • Copyright
  • Contents
  • Contributors
  • About the Editor
  • Foreword
  • Preface
  • Acknowledgments
  • Section I: Aquatic pollution and bioremediation
  • Chapter 1: Cities water pollution-Challenges and controls
  • 1. Introduction
  • 2. Water pollution
  • 2.1. Emerging contaminants
  • 3. Categories of water pollution
  • 3.1. Groundwater
  • 3.2. Surface water
  • 3.3. Ocean water
  • 4. Impact of water pollution
  • 4.1. Human health
  • 4.2. Ecosystems
  • 4.3. Economic loss
  • 5. Socio-economic and environmental challenges
  • 6. Water pollution control
  • 7. Water quality and UN-sustainable development goals
  • 8. Law, policies, and management action
  • 9. Conclusion
  • References
  • Chapter 2: Aquatic pollution and wastewater treatment system
  • 1. Introduction
  • 2. Bibliometric survey in SCOPUS database
  • 3. Sources of wastewater
  • 3.1. Domestic wastewater
  • 3.2. Agricultural drainage water
  • 3.3. Industrial effluents
  • 3.4. Stormwater
  • 4. Pollution in aquatic species
  • 5. Wastewater treatment technologies
  • 5.1. Natural-based treatment
  • 5.1.1. Wetland and phytoremediation
  • 5.1.2. Waste stabilization pond
  • 5.2. Engineering-based treatment
  • 5.2.1. Activated sludge
  • 5.2.2. Trickling filter (biofilter)
  • 5.2.3. Rotating biological contactors (RBCs)
  • 5.2.4. Anaerobic digester
  • 5.2.5. Upflow anaerobic sludge blanket (UASB) reactor
  • 5.2.6. Microalgae phycoremediation systems
  • 6. Conclusions and recommendations
  • Acknowledgment
  • References
  • Chapter 3: Integrated phytoremediation approaches for abatement of aquatic pollution and element recovery
  • 1. Introduction
  • 2. Aquatic pollution and pollutants
  • 2.1. Organic pollutant
  • 2.2. Inorganic pollutant
  • 3. Phytoremediation.
  • 4. Pollutant removal mechanism by aquatic plants
  • 4.1. Phytoextraction
  • 4.2. Phytostabilization
  • 4.3. Phytotransformation
  • 4.4. Phytovolatilization
  • 4.5. Rhizofiltration
  • 4.6. Hydraulic barrier
  • 5. Application of macrophytes for the aquatic pollution abatement
  • 6. Application of algal technologies for aquatic pollution abatement
  • 7. Major geo-environmental factors affecting phytoremediation
  • 8. Integrating phytoremediation with energy and element recovery
  • 8.1. Biomass utilization
  • 8.2. Element recovery
  • 9. The future prospect of integrated phytoremediation
  • 10. Conclusion
  • References
  • Chapter 4: Algae-based low-cost strategy for wastewater treatment
  • 1. Introduction
  • 2. Toxic metal ions as pollutants in wastewater
  • 3. Biosorption as a method of heavy metal ions removal from wastewater
  • 4. Macroalgae as a biosorbent used in wastewater treatment
  • 5. Utilization of the metal-loaded biomass
  • 6. Conclusions
  • Acknowledgments
  • References
  • Chapter 5: Aquatic macrophytes and algae in textile wastewater treatment
  • 1. Introduction
  • 2. Overview of textile industry
  • 3. Nature and characteristics of textile wastewater
  • 4. Textile wastewater treatment processes
  • 5. Role of algae in textile wastewater treatment
  • 6. Role of aquatic macrophytes in textile wastewater treatment
  • 7. Conclusion
  • References
  • Chapter 6: Prospects of carbon capture and carbon sequestration using microalgae and macrophytes
  • 1. Introduction
  • 2. Global carbon cycle
  • 3. Necessity of sequestering carbon
  • 4. Carbon sequestration using microalgae
  • 4.1. Atmospheric carbon capture through photosynthesis
  • 4.2. Industrial flue gas carbon capture
  • 4.3. CO2 tolerance of microalgae
  • 4.4. Cultivation methods for CO2 fixation
  • 4.4.1. Open pond system
  • 4.4.2. Closed bioreactor system.
  • 4.4.3. Cultivation environment condition
  • 5. Carbon sequestration using macrophytes
  • 5.1. Carbon utilization through photosynthesis
  • 5.2. Carbon sequestration through wetland macrophytes
  • 5.3. Carbon sequestration through seaweeds (macroalgae)
  • 5.4. Carbon concentrating mechanism
  • 5.4.1. Mechanism of C4 metabolism in macrophytes
  • 5.4.2. Mechanism of CAM metabolism in macrophytes
  • 6. Direct carbon sequestration in soil using pyrolytic product
  • 7. Future prospects and conclusion
  • References
  • Section II: Biomass and biofuels
  • Chapter 7: Recent advancements in bioflocculation of microalgae for bioenergy applications
  • 1. Introduction
  • 2. Bioflocculation
  • 2.1. Fungi assisted bioflocculation
  • 2.2. Bacteria assisted flocculation
  • 2.3. Algal-algal bioflocculation
  • 2.4. Biologically derived flocculants
  • 3. Conclusion
  • References
  • Chapter 8: Algal biomass pretreatment and developments for better biofuel production
  • 1. Introduction
  • 2. Challenges to algae-to-biofuel conversion efficiency
  • 3. Algal biomass pretreatment strategies
  • 3.1. Conventional pretreatment techniques
  • 3.1.1. Physical pretreatment
  • 3.1.2. Chemical pretreatment
  • 3.1.3. Biological pretreatment
  • 3.1.4. Combined pretreatment
  • 3.2. Emerging pretreatment techniques
  • 3.2.1. Electrophysical pretreatment
  • 3.2.2. Nanoparticles-based pretreatment
  • 3.2.3. Phytohormones-based pretreatment
  • 3.2.4. Freezing and thawing cycles
  • 4. Developments in algal biomass to biofuels
  • 4.1. Genetic engineering for algae biofuels
  • 4.2. Algae biofuels for aviation
  • 5. Conclusions and perspectives
  • Acknowledgments
  • References
  • Chapter 9: Opportunities and challenges in algal biofuel
  • 1. Introduction
  • 2. Economic, environmental, and social challenges and opportunities
  • 2.1. Challenges to macroalgal biomass production.
  • 2.2. Challenges to microalgal biomass production
  • 2.2.1. Biomass production in wastewater with bioelectricity generation
  • 2.3. Potential biofuel
  • 2.3.1. Biodiesel
  • 2.3.2. Bioethanol
  • 2.3.3. Biogas
  • 2.3.4. Biohydrogen
  • 2.3.5. Bio-oil
  • 2.3.6. Biokerosene
  • 3. Conclusions
  • Acknowledgment
  • References
  • Chapter 10: Biogas production from aquatic biomass
  • 1. Introduction
  • 2. Anaerobic digestion process
  • 2.1. Stages of the anaerobic digestion process
  • 2.1.1. Hydrolysis
  • 2.1.2. Acidogenesis
  • 2.1.3. Acetogenesis
  • 2.1.4. Methanogenesis
  • 2.2. Mass flow of anaerobic digestion of the aquatic biomass
  • 2.3. Microbiology of anaerobic digestion
  • 2.4. Enzymatic reactions in anaerobic digestion
  • 3. Operational parameters
  • 3.1. Oxygen
  • 3.2. pH
  • 3.3. Total solid and volatile solid contents of substrate and digestate
  • 3.4. Volatile fatty acids
  • 3.5. Volatile organic acids/total inorganic carbon
  • 3.6. Biogas amount and biogas content
  • 3.7. Inhibition parameters
  • 3.7.1. Ammonia
  • 3.7.2. Sulfide
  • 3.7.3. Light and heavy metals
  • 3.7.4. Organics
  • 3.8. Monitoring and control of the biogas plants
  • 4. Design of the anaerobic digestion process
  • 4.1. Design of the feeding
  • 4.1.1. Substrate types
  • 4.1.2. Batch, semicontinuous, and continuous
  • 4.1.3. Nutrients and trace elements
  • 4.1.4. Hydraulic retention time
  • 4.1.5. Organic loading rate
  • 4.2. Reactor type
  • 4.2.1. One stage/two stages
  • 4.2.2. Dry or wet anaerobic digestion
  • 4.2.3. Biogas storage and treatment
  • 4.3. Determination of digester temperature
  • 4.4. Agitation system
  • 5. Current developments for biogas production from aquatic biomass
  • 5.1. Biogas production from microalgae
  • 5.2. Biogas production from Macrophytes
  • 6. Conclusions
  • References
  • Section III: Bioproducts.
  • Chapter 11: Recent advances in the production of nutritional products from algal biomass
  • 1. Introduction
  • 2. Evolution of algae as food
  • 3. Algal biotechnology focusing on nutraceutical production
  • 4. Nutritional components of algae as food ingredients
  • 4.1. Polysaccharides
  • 4.1.1. Carrageenan
  • 4.1.2. Agar
  • 4.1.3. Alginate
  • 4.1.4. Fucoidan
  • 4.2. Protein and amino acids
  • 4.3. Pigments
  • 4.4. Lipids
  • 5. Processing of algal biomass for nutraceutical development
  • 5.1. Preparation and pretreatment of algal biomass
  • 5.2. Innovative extraction techniques
  • 5.2.1. Sequential extraction
  • 5.2.2. Supercritical fluid extraction (SFE) using CO2 and cosolvent
  • 5.2.3. Ultrasound-microwave-assisted extraction (UMAE)
  • 5.2.4. Green ultra-high-pressure extraction (green-UHPE)
  • 5.2.5. Multiextraction (enzymatic and alkaline)
  • 5.2.6. Compressional-puffing-hydrothermal extraction process (CPHE)
  • 5.2.7. Pulsed electric fields (PEF) system
  • 6. Fortification of algal components into food products and its applications
  • 6.1. Dairy products
  • 6.2. Bakery products
  • 6.3. Meat and seafood processing
  • 6.4. Other products
  • 7. Food regulations for algal food additives
  • 8. Market potential of algal nutraceuticals
  • 9. Challenges in algal nutraceutical product development and commercialization
  • 10. Future prospects
  • 11. Conclusion
  • Acknowledgment
  • References
  • Web references
  • Chapter 12: Obtaining commodity chemicals by bio-refining of algal biomass
  • 1. Introduction
  • 2. Lipid fraction from microalgal biomass
  • 3. Carbohydrate fraction from microalgal biomass
  • 4. Protein fraction from microalgal biomass
  • 5. Pigments from microalgal biomass
  • 6. Bio-refinery of microalgal biomass
  • 7. Challenges and future prospect of microalgal bio-refinery
  • 8. Conclusion
  • References.