Cargando…

Anti-aging drug discovery on the basis of hallmarks of aging /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Singh, Sandeep Kumar, Lin, Chih-Li, Mishra, Shailendra Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom ; San Diego, CA : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Anti-aging Drug Discovery on the Basis of Hallmarks of Aging
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • 1 The aging: introduction, theories, principles, and future prospective
  • 1.1 Introduction
  • 1.2 Modern theories of aging in biology
  • 1.2.1 Three subcategories exist in programmed theory
  • 1.2.1.1 Programmed longevity
  • 1.2.1.2 Endocrine theory
  • 1.2.1.3 Immunological theory
  • 1.2.2 The error or damage theory has the following subcategories
  • 1.2.2.1 Wear and tear theory
  • 1.2.2.2 Rate of living theory
  • 1.2.2.3 Cross-linking theory
  • 1.2.2.4 Free radical theory
  • 1.2.2.5 Somatic DNA damage theory
  • 1.3 Principles
  • 1.4 Extrinsic and intrinsic factors on aging
  • 1.4.1 Circles and systems of social support on aging
  • 1.4.2 Smoking on aging
  • 1.4.3 Leisure activities on aging
  • 1.4.4 Diet on aging
  • 1.4.5 Physical health effects of exercise on aging
  • 1.4.6 Cognitive health effects of exercise on aging
  • 1.4.7 Aging intervention and future stem cell research
  • 1.5 Future perspective (aging therapies)
  • 1.5.1 Caloric restriction
  • 1.5.2 Stem cell therapies
  • 1.5.3 Hormonal therapies
  • 1.5.4 Telomere-based therapies
  • 1.5.5 Therapies to come
  • 1.6 Summary
  • References
  • 2 Impact of aging at cellular and organ level
  • 2.1 Introduction
  • 2.2 Multicellular organization: human body
  • 2.3 Changes associated with aging
  • 2.4 Aging in cells
  • 2.5 Aging in tissue and organs
  • 2.6 Models to study aging
  • 2.7 Antiaging therapy/treatment
  • 2.8 Conclusion
  • Competing interests
  • Declaration of interest
  • Financial support
  • Authors' contributions
  • References
  • 3 Brief about hallmarks of aging
  • 3.1 The nine hallmarks of aging
  • 3.1.1 Stem cell exhaustion
  • 3.1.1.1 DNA damage on stem cell survival
  • 3.1.2 Genomic instability.
  • 3.1.2.1 Genetic deterioration and somatic mutations
  • 3.1.3 Telomere attrition
  • 3.1.3.1 Structure and function of telomeres
  • 3.1.3.2 Telomere aging and cellular senescence
  • 3.1.4 Epigenetic alterations
  • 3.1.4.1 DNA methylation
  • 3.1.4.2 Histone modifications
  • 3.1.5 Deregulated nutrient sensing
  • 3.1.5.1 Lipid sensing
  • 3.1.5.2 Amino acid sensing
  • 3.1.5.3 Glucose sensing
  • 3.1.6 Altered intercellular communication
  • 3.1.6.1 Inflammaging
  • 3.1.7 Loss of proteostasis
  • 3.1.7.1 Molecular chaperones
  • 3.1.7.2 Proteolytic systems
  • 3.1.7.3 Autophagy
  • 3.1.8 Cellular senescence
  • 3.1.8.1 Triggers of senescence
  • 3.1.8.2 Senolytics
  • 3.1.9 Mitochondrial dysfunction
  • 3.1.9.1 Mitochondrial DNA
  • 3.1.9.2 Mitohormesis
  • 3.2 Conclusions
  • References
  • 4 Overview of various antiaging strategies
  • 4.1 Introduction
  • 4.2 Modulation of autophagy for successful aging
  • 4.3 Elimination of senescent cells for successful aging
  • 4.4 Plasma transfusion for successful aging
  • 4.5 Intermittent fasting as a means for successful aging
  • 4.6 Regular exercise for successful aging
  • 4.7 Role of antioxidants for successful aging
  • 4.8 Stem cell therapy for successful aging
  • 4.9 Summary
  • References
  • 5 Elimination of damaged cells-dependent antiaging strategy
  • 5.1 Introduction
  • 5.2 Aging-associated disease and physiological changes
  • 5.2.1 Changes in nervous system
  • 5.2.1.1 Cognition
  • 5.2.1.2 Memory, learning, and intelligence
  • 5.2.2 Special senses
  • 5.2.2.1 Vision
  • 5.2.2.2 Hearing
  • 5.2.2.3 Taste acuity
  • 5.2.2.4 Smell
  • 5.2.2.5 Touch
  • 5.2.3 Changes in musculoskeletal system
  • 5.3 Antiaging strategies
  • 5.3.1 Senescent cell elimination as an antiaging therapy
  • 5.3.2 Transfusion of plasma from young individuals to promote successful aging
  • 5.3.3 Intermittent fasting as a means to combat aging.
  • 5.3.4 Promise of neurogenesis enhancement for successful aging and preventing AD
  • 5.3.5 Physical exercise for modulating aging and preventing dementia
  • 5.3.6 Promising antioxidants and herbals for promoting successful aging
  • 5.3.7 Stem-cell therapy for promoting healthy brain aging and reversing AD
  • 5.4 Hallmarks of aging
  • 5.4.1 Genomic instability
  • 5.4.2 Telomere attrition
  • 5.4.3 Epigenetic alterations
  • 5.4.4 Loss of proteostasis
  • 5.4.5 Deregulated nutrient-sensing
  • 5.4.6 Mitochondrial dysfunction
  • 5.4.6.1 Reactive oxygen species
  • 5.4.6.2 Mitochondrial integrity and biogenesis
  • 5.4.6.3 Mitohormesis
  • 5.4.7 Cellular senescence
  • 5.4.8 Stem-cell exhaustion
  • 5.4.9 Altered intercellular communication
  • 5.4.9.1 Inflammation
  • 5.5 Cellular reprogramming
  • 5.6 Models of premature aging based on cellular reprogramming
  • 5.6.1 Progeroid syndromes
  • 5.7 Cellular rejuvenation by partial reprogramming
  • 5.8 Implications for regenerative medicine: successes and limitations of in vivo reprogramming
  • 5.9 Conclusion
  • Acknowledgments
  • References
  • 6 Telomerase reactivation for anti-aging
  • 6.1 Introduction
  • 6.2 Aging
  • 6.3 Aging-a telomere-mitochondria relation
  • 6.4 Telomerase and its possible role in antiaging therapies
  • 6.5 Tapping the potential of telomerase
  • 6.6 Stem cells and aging
  • 6.7 Future aspects in antiaging
  • Acknowledgments
  • Competing interests
  • Funding
  • Authors' contribution
  • References
  • 7 Epigenetic drugs based on antiaging approach: an overview
  • 7.1 Introduction
  • 7.2 The first wave of epigenetic drugs
  • 7.2.1 DNA methyltransferase inhibitors
  • 7.2.2 Histone deacetylase inhibitors
  • 7.3 The second wave of epigenetic drugs
  • 7.3.1 DNA methyltransferase inhibitors
  • 7.3.2 Histone deacetylase inhibitors
  • 7.4 The third wave of epigenetic drugs.
  • 7.4.1 Histone methyltransferase inhibitors
  • 7.4.2 Histone demethylase inhibitors
  • 7.4.3 Bromodomains
  • 7.5 The fourth wave of epigenetic drugs
  • 7.5.1 Revolution in biomedical sciences
  • 7.5.2 Target selection
  • 7.5.3 Enzyme isoform selectivity and drug designing
  • 7.6 Conclusion
  • References
  • 8 Exploring the role of protein quality control in aging and age-associated neurodegenerative diseases
  • 8.1 Proteins misfolding in aging and diseases
  • 8.2 Protein quality control
  • 8.2.1 Components of the protein quality control
  • 8.2.1.1 Molecular chaperones
  • 8.2.1.2 Ubiquitin-proteasome system
  • 8.2.1.3 Autophagy-lysosomal pathway
  • 8.3 Altered protein quality control in aging and diseases: lessons learned from in vitro and in vivo models
  • 8.3.1 Aging
  • 8.3.2 Alzheimer's disease
  • 8.3.3 Parkinson's disease
  • 8.3.4 Amyotrophic lateral sclerosis
  • 8.3.5 Polyglutamine diseases
  • 8.4 Therapeutic perspectives
  • 8.4.1 Small molecules
  • 8.4.2 Natural products serve as modifiers of an altered protein quality control system
  • 8.4.2.1 Natural products as chaperone modifiers
  • 8.4.2.2 Natural products targeting the UPS
  • 8.4.2.3 Natural products targeting the autophagy-lysosomal pathway
  • 8.5 Emerging techniques
  • 8.6 Conclusion
  • Acknowledgments
  • Conflict of interest
  • Author's contributions
  • References
  • 9 Dietary restriction and mTOR and IIS inhibition: the potential to antiaging drug approach
  • 9.1 Introduction
  • 9.2 The antiaging drug discovery
  • 9.2.1 The nutrient-signaling mechanism of the antiaging process
  • 9.2.1.1 Dietary restriction
  • 9.2.2 The insulin/insulin-like growth factor signaling (IIS) pathway
  • 9.3 The mechanism of pharmacological strategies in antiaging process
  • 9.3.1 The mechanistic target of rapamycin
  • 9.4 Conclusion
  • References.
  • 10 Antiaging drugs, candidates, and food supplements: the journey so far
  • 10.1 Introduction
  • 10.1.1 Some of the factors that contribute to aging process but not limited to this
  • 10.2 Antiaging drugs
  • 10.2.1 FDA approved
  • 10.2.1.1 Metformin
  • 10.2.1.2 Rapamycin
  • 10.2.1.3 L. Carnosine
  • 10.2.1.4 Isotretinoin
  • 10.2.1.5 Cycloastragenol
  • 10.2.1.6 Urolithin-A
  • 10.2.1.7 Quercetin caprylate
  • 10.2.1.8 Acarbose
  • 10.2.1.9 Crocin
  • 10.2.1.10 Hyaluronic acid
  • 10.2.2 Food supplements
  • 10.2.3 Astaxanthin
  • 10.2.4 Vitamin C/L-ascorbic acid
  • 10.2.5 Vitamin E-concoction of tocopherols and tocotrienols
  • 10.2.6 Vitamin A
  • 10.2.7 Poly-phenols
  • 10.2.8 Flavonoids
  • 10.2.9 Resveratrol (Stilbenes)
  • 10.2.10 Curcumin
  • 10.2.11 Pathways targeted and their cross talks
  • 10.3 Aging-molecular and biochemical significance
  • 10.4 Summary
  • References
  • 11 Role of AMP-activated protein kinase and sirtuins as antiaging proteins
  • 11.1 Introduction
  • 11.2 AMP-activated protein kinase and its functions
  • 11.3 Sirtuins: role of SIRT1
  • 11.4 Correlation between AMP-activated protein kinase and sirtuins
  • 11.5 Effect of AMP-activated protein kinase and sirtuins on calorie restriction and longevity
  • 11.6 Role of AMP-activated protein kinase and sirtuins in mitochondrial homeostasis
  • 11.6.1 AMP-activated protein kinase in mitochondrial biogenesis
  • 11.6.2 AMP-activated protein kinase in mitochondrial fission and mitophagy
  • 11.6.3 Sirtuins in mitochondrial biogenesis
  • 11.6.4 Sirtuins in mitophagy
  • 11.7 AMP-activated protein kinase and sirtuins in age-associated neurodegenerative diseases
  • 11.7.1 Alzheimer's disease
  • 11.7.2 Parkinson's disease
  • 11.7.3 Huntington's disease
  • 11.7.4 Amyotrophic lateral sclerosis
  • 11.8 Modulation of AMP-activated protein kinase and sirtuins.