Cargando…

New frontiers in astrobiology

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Thombre, Rebecca S., 1980-, Vaishampayan, Parag
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • New Frontiers in Astrobiology
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Standards of evidence in the search for extraterrestrial life
  • 1. Introduction
  • 2. Astrobiology is not only about life beyond Earth
  • 3. Standards of evidence required in searching for life beyond Earth
  • 3.1. Tier 1-One or more requirements for known life
  • 3.2. Tier 2-All known requirements for at least one known organism
  • 3.3. Tier 3-Indirect evidence for life
  • 3.4. Tier 4-Direct discovery of life
  • 3.5. Summary of evidence
  • 4. Astrobiologists are not ``hunting�� for alien life
  • 5. Hypotheses about extraterrestrial life are not a betting game
  • 6. Good scientific hypotheses are falsifiable, but not all falsifiable hypotheses are good
  • 7. Conclusion
  • Postscript
  • Acknowledgments
  • References
  • Chapter 2: Prebiotic chemistry: From dust to molecules and beyond
  • 1. Introduction
  • 2. The origins of key biomolecules
  • 2.1. Central carbon metabolites
  • 2.2. Sugars and nucleotides
  • 2.3. Amino acids/peptides
  • 2.4. Organosulfurs and lipids
  • 2.5. Cofactors
  • 2.6. Which prebiotic routes were actually part of protometabolism?
  • 3. Chirality
  • 3.1. Defining chirality
  • 3.2. Chiral asymmetry, from atom to molecule and mineral
  • 3.3. Enantiomeric excess-inducing processes
  • 3.4. Chirality as a diagnostic tool for life detection missions
  • 4. Beyond molecules: How functions relevant to life may emerge
  • 4.1. How functions relevant to life may emerge from chemical systems
  • 4.2. Network models as a framework to pose origins questions
  • 4.3. Implications for the search for extraterrestrial life
  • 5. Conclusions and future trends
  • 5.1. Conclusions
  • 5.2. Current and future trends
  • References
  • Chapter 3: Astrochemistry: Ingredients of life in space
  • 1. Setting the stage
  • 2. Elemental ingredients.
  • 3. Interstellar molecules
  • 3.1. Stardust
  • 3.2. Diffuse molecular clouds
  • 3.3. Dense clouds
  • 3.4. Star-forming regions
  • 3.5. Protoplanetary disks
  • 4. Prebiotic ingredients
  • 5. Future trends in astrochemistry
  • References
  • Chapter 4: Water and organics in meteorites
  • 1. Introduction
  • 2. Water in meteorites
  • 2.1. Hydrous mineral phases
  • 3. Liquid water inclusions
  • 4. Aqueous alteration on asteroid parent bodies
  • 5. Organic matter in meteorites
  • 5.1. Organic phases
  • 5.2. Extraterrestrial organics and their significance for terrestrial biology
  • 5.2.1. Amino acids
  • 5.2.2. Nucleobases
  • 5.2.3. Polyols
  • 5.2.4. Carboxylic acids
  • 5.3. The roles of water
  • 6. Delivery of meteorites
  • 6.1. Space weathering
  • 6.2. Grand tack
  • 6.3. Atmospheric entry heating
  • 7. Terrestrial modification of meteorites
  • 7.1. Atmospheric entry
  • 7.2. Terrestrial residence
  • 8. Terrestrial vs extraterrestrial origin
  • 8.1. Water
  • 8.2. Organic compounds
  • 8.2.1. Isotopic analysis
  • 8.2.2. Enantiomeric ratios
  • 9. Challenges in meteoritic analyses and how that can be overcome by modern technology
  • 9.1. Mineralogy and petrology
  • 9.2. Typical sample preparation methods for organic analyses
  • 9.3. Isotopic analysis
  • 9.4. Compound-specific separation and characterization
  • 9.5. Chronometric dating
  • 10. Sample return space missions
  • 10.1. Previous missions
  • 10.2. Current missions
  • 10.3. Other sample return mission concepts
  • 11. Conclusions
  • References
  • Further reading
  • Chapter 5: From building blocks to cells
  • 1. Introduction
  • 2. Coming together: From building blocks to protocells
  • 2.1. Building compartments
  • 2.2. Building a metabolism
  • 2.3. Building functional macromolecules
  • 2.4. Integration and continuity on the path to protocells
  • 3. The path to LUCA: From protocells to cells.
  • 3.1. The progenote era and the emergence of translation and the genetic code
  • 3.2. The emergence of complex metabolic processes
  • 3.3. Integration and continuity on the path to LUCA
  • 4. Conclusion
  • References
  • Chapter 6: Microbial life in space
  • 1. Introduction
  • 2. Space and Low Earth Orbit (LEO) environment
  • 3. Microbial Experiments conducted in LEO
  • 4. Microbial life in stratosphere
  • 5. Effects of microgravity on microorganisms in space
  • 5.1. Ground-based microgravity and hypergravity techniques
  • 5.1.1. Clinostats
  • 5.1.2. 3-D Clinostat/Random Positioning Machine (RPM)
  • 5.1.3. Rotating wall vessel
  • 5.1.4. Diamagnetic levitation
  • 5.1.5. Centrifuge
  • 5.2. Effects of microgravity on microorganisms
  • 5.2.1. Cell growth
  • 5.2.2. Secondary metabolism
  • 5.2.3. Virulence and resistance
  • 5.2.4. Proteomics and genomics under microgravity
  • 5.3. Effects of hypergravity on microorganisms
  • 6. Microbial diversity in the International Space Station (ISS)
  • 7. Applications of microorganisms in space
  • 7.1. Applications of microorganisms as microbial fuel cells (MFCs) in space
  • 7.2. Applications of microbial proteins and molecules in space
  • 7.3. Microbial diversity in spacecraft assembly room and planetary protection
  • 7.4. Applications of microorganism in biomining
  • 7.5. Application of microorganism for production of secondary metabolites in space
  • 8. Conclusion
  • Acknowledgments
  • References
  • Further reading
  • Chapter 7: Habitability in the Solar System beyond the Earth and the search for life
  • 1. Habitability
  • 2. Habitability of target locations for life detection missions
  • 2.1. Mars's polar permafrost
  • 2.2. Mars's ancient equatorial lakebeds
  • 2.3. Enceladus's plume
  • 2.4. Europa's surface
  • 2.5. Venus's clouds
  • 2.6. Titan-A special case: A surface liquid that is not H2O.
  • 3. Other candidates for habitable worlds
  • 4. Searching habitable worlds for a second genesis of life
  • 5. Conclusion
  • Acknowledgments
  • References
  • Chapter 8: Habitable exoplanets
  • 1. Introduction
  • 2. Measuring planetary habitability
  • 3. Potentially habitable exoplanets
  • 4. Searching for habitable worlds
  • 5. A catalog of potentially habitable exoplanets
  • 6. The nearest potentially habitable exoplanet
  • 7. Searching for intelligence life
  • References
  • Chapter 9: Applications of omics in life detection beyond Earth
  • 1. Introduction
  • 2. Nucleic acids sequencing
  • 3. Proteomics
  • 4. Metabolomics and lipidomics
  • 5. Omics techniques and future missions
  • 6. Conclusion
  • References
  • Chapter 10: Life detection in space: Current methods and future technologies
  • 1. Introduction
  • 2. Biosignatures for life detection
  • 2.1. Amino acids
  • 2.2. Phospholipids and fatty acids
  • 2.3. Nucleotides, DNA, and RNA
  • 2.4. Dipicolinic acid (DPA)
  • 3. Where to look for life in the solar system?
  • 3.1. Mars
  • 3.2. Europa
  • 3.3. Enceladus
  • 4. Mars missions in search of life and biosignatures
  • 4.1. The Viking mission-The first extant life detection mission on Mars
  • 4.2. The Mars Pathfinder, Mars Exploration Rover, and Phoenix missions
  • 4.3. The MSL and ExoMars missions-Looking for organic molecules on the Martian surface
  • 4.4. Life detection through Mars sample return
  • 5. Signatures of life and how to detect them
  • 5.1. Detection of intact microbes
  • 5.2. Detection of organic biosignatures of extant and extinct life
  • 5.3. Nonorganic solvent extraction
  • 5.4. SCHAN-Supercritical CO2 and subcritical H2O ANalysis instrument
  • 6. Conclusions
  • Acknowledgment
  • References
  • Chapter 11: Future of life in the Solar System and beyond
  • 1. Introduction
  • 2. Futures studies and space exploration.
  • 3. A brief history of human spaceflight
  • 3.1. The space race
  • 3.2. The era of space cooperation
  • 3.3. The new space era
  • 4. Permanent space settlements
  • 4.1. Food production on Mars
  • 4.2. Biosecurity on Mars
  • 4.3. Bioinnovation on Mars
  • 5. Terraforming
  • 6. World ships and interstellar travel
  • 7. Conclusion
  • References
  • Chapter 12: Planetary protection: Scope and future challenges
  • 1. Planetary protection in practice
  • 1.1. International planetary protection policy
  • 1.2. Planetary protection requirements
  • 1.3. Impact of current scientific consensus on planetary protection
  • 1.3.1. Science changing planetary protection categorization
  • Mars
  • Europa
  • Sample return from Phobos
  • 1.3.2. Science changing planetary protection implementation
  • Heat microbial reduction
  • Vapor hydrogen peroxide
  • Total adenosine triphosphate
  • 2. Leveraging science to enable missions
  • 2.1. Importance of astrobiology to planetary protection
  • 2.2. Astrobiological testbeds and space-analog Earth environments
  • 2.3. Tools of the trade-Balancing limits of detection and technology infusion considerations for PP
  • 3. Planetary protection future challenges
  • 3.1. International science and engineering collaboration and coordination for PP policy and processes
  • 3.2. Increased nature and sensitivity of scientific payloads
  • 3.3. Human exploration to Earths Moon and Mars
  • References
  • Chapter 13: Universal constraints to life derived from artificial agents and games*
  • 1. Introduction
  • 2. Application of evolutionary game theory
  • 2.1. Evolutionary game theory
  • 2.2. Cooperation and defection
  • 2.3. Relevant applications
  • 3. Models and simulation methods
  • 4. Simulation experiments
  • 4.1. PD basic with patches
  • 4.2. PD basic with turtles
  • 4.3. PD turtles with birth and death
  • 4.4. Tit-for-tat.