Biomedical image synthesis and simulation : methods and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, UK :
Academic Press,
2022.
|
Colección: | MICCAI Society book series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Biomedical Image Synthesis and Simulation
- Copyright
- Contents
- Contributors
- Preface
- 1 Introduction to medical and biomedical image synthesis
- Part 1 Methods and principles
- 2 Parametric modeling in biomedical image synthesis
- 2.1 Introduction
- 2.2 Parametric modeling paradigm
- 2.2.1 Modeling of the cellular objects
- 2.2.1.1 Generic parameter-controlled shape modeling: random shape model for nucleus and cell body
- 2.2.1.2 Cell-type specific parametric shape models
- 2.2.1.3 Modeling appearance: texture and subcellular organelle models
- 2.2.1.4 Modeling spatial distribution and populations
- 2.2.2 Modeling microscopy and image acquisition: from object models to simulated microscope images
- 2.3 On learning the parameters
- 2.4 Use cases
- 2.4.1 SIMCEP: parametric modeling framework aimed for generating and understanding microscopy images of cells
- 2.4.2 Simulated data for benchmarking
- 2.5 Future directions
- 2.6 Summary
- Acknowledgments
- References
- 3 Monte Carlo simulations for medical and biomedical applications
- 3.1 Introduction
- 3.1.1 A brief history
- 3.1.2 Monte Carlo method and biomedical physics
- 3.2 Underlying theory and principles
- 3.3 Particle transport through matter
- 3.3.1 Photon physics effects
- 3.3.2 Cross-section and mean free path
- 3.3.3 Models
- 3.3.4 Particle transport
- 3.4 Monte Carlo simulation structure
- 3.4.1 Particle source model
- 3.4.1.1 Analytical source
- 3.4.1.2 Voxelized source
- 3.4.1.3 Cumulative density function
- 3.4.1.4 Time management
- 3.4.1.5 Phase space
- 3.4.2 Digitized phantom
- 3.4.2.1 Matter composition
- 3.4.2.2 Analytical geometry
- 3.4.2.3 Voxelized geometry
- 3.4.2.4 Tessellated geometry
- 3.4.2.5 Mixed geometry
- 3.4.2.6 Hierarchical geometry and space partitioning data structure
- 3.4.3 Particle detector.
- 3.5 Running a Monte Carlo simulation
- 3.6 Improving Monte Carlo simulation efficiency
- 3.6.1 Woodcock tracking
- 3.6.2 GPU
- 3.6.3 Fixed force detection
- 3.6.4 Angular response functions
- 3.7 Examples of Monte Carlo simulation applications in medical physics
- 3.8 Monte Carlo simulation for computational biology
- 3.8.1 Generalization of the Monte Carlo method
- 3.8.2 Examples of computational biology applications
- 3.9 Summary
- References
- 4 Medical image synthesis using segmentation and registration
- 4.1 Introduction
- 4.2 Segmentation-based image synthesis
- 4.2.1 Segmentation approaches
- 4.2.1.1 Manual segmentation
- 4.2.1.2 Automatic segmentation
- 4.2.2 Intensity assignment approaches
- 4.2.2.1 Segmentation methods with bulk assignment
- 4.2.2.2 Segmentation methods with subject-specific assignment
- 4.3 Registration-based image synthesis
- 4.3.1 Single-atlas registration approaches
- 4.3.1.1 Direct multimodal registration
- 4.3.1.2 Indirect unimodal registration
- 4.3.2 Multi-atlas registration approaches
- 4.3.3 Combination of registration and regression approaches
- 4.4 Hybrid approaches combining segmentation and registration
- 4.5 Future directions and research challenges
- 4.6 Summary
- Acknowledgments
- References
- 5 Dictionary learning for medical image synthesis
- 5.1 Introduction
- 5.2 Sparse coding
- 5.2.1 Orthogonal matching pursuit
- 5.3 Dictionary learning
- 5.4 Medical image synthesis with dictionary learning
- 5.5 Future directions and research challenges
- 5.6 Summary
- Acknowledgments
- References
- 6 Convolutional neural networks for image synthesis
- 6.1 Convolutional neural networks for image synthesis
- 6.2 Neural network building blocks
- 6.2.1 Neuron
- 6.2.2 Activation function
- 6.2.3 Generator layer details
- 6.3 Training a convolutional neural network.
- 6.3.1 Loss functions
- 6.3.2 Back propagation
- 6.3.3 Image synthesis accuracy
- 6.4 Practical aspects
- 6.4.1 Pooling layers
- 6.4.2 Convolutional versus fully connected neural networks
- 6.4.3 Vanishing gradient
- 6.5 Commonly known networks
- 6.5.1 AlexNet
- 6.5.2 UNet
- 6.5.3 Inception network
- 6.6 Conclusion
- References
- 7 Generative adversarial networks for medical image synthesis
- 7.1 Introduction
- 7.2 Generative adversarial networks
- 7.2.1 Network architecture
- 7.2.1.1 Deep convolutional GANs
- 7.2.2 Loss function
- 7.2.2.1 Discriminator loss
- 7.2.2.2 Adversarial loss
- 7.2.3 Challenges of training GANs
- 7.3 Conditional GANs
- 7.3.1 Network architecture
- 7.3.2 Loss function
- 7.3.2.1 Image distance loss
- 7.3.2.2 Histogram matching loss
- 7.3.2.3 Perceptual loss
- 7.3.3 Variants of cGANs
- 7.3.3.1 Pix2pix
- 7.3.3.2 InfoGAN
- 7.4 Cycle GAN
- 7.4.1 Network architecture
- 7.4.2 Loss function: cycle consistency loss
- 7.4.3 Variants of Cycle GAN
- 7.4.3.1 Residual Cycle-GAN
- 7.4.3.2 Dense Cycle-GAN
- 7.4.3.3 Unsupervised image-to-image translation networks (UNIT)
- 7.4.3.4 Bicycle-GAN
- 7.4.3.5 StarGAN
- 7.5 Practical aspects
- 7.5.1 Network input dimension and size
- 7.5.2 Pre-processing
- 7.5.3 Data augmentation
- 7.6 CGAN and Cycle-GAN applications
- 7.6.1 Multi-modal MRI synthesis
- 7.6.2 MRI-only radiation therapy treatment planning
- 7.6.3 Image quality improvement/enhancement
- 7.6.4 Cell synthesis
- 7.7 Summary and discussion
- Disclosures
- References
- 8 Autoencoders and variational autoencoders in medical image analysis
- 8.1 Introduction
- 8.1.1 History of the method
- 8.1.2 Autoencoders and variational autoencoders in biomedical image analysis and synthesis
- 8.1.3 Outline of this chapter and notation
- 8.2 Autoencoders
- 8.2.1 Regularized autoencoders.
- 8.2.1.1 Sparse autoencoders
- 8.2.1.2 Contractive autoencoders
- 8.2.1.3 Denoising autoencoders
- 8.2.2 Summary
- 8.3 Variational autoencoders
- 8.3.1 The evidence lower bound (ELBO)
- 8.3.2 Implementation and optimization of variational autoencoders
- 8.3.3 Advantages and challenges of variational autoencoders
- 8.3.3.1 Current challenges of variational autoencoders
- 8.3.4 Disentanglement of the latent space
- 8.3.5 Alternative reconstruction objectives
- 8.3.6 Improving the flexibility of the model
- 8.3.6.1 Alternative priors and auxiliary variables
- 8.3.6.2 Importance weighted autoencoder
- 8.3.6.3 Adversarial autoencoders
- 8.4 Example applications
- 8.4.1 Unsupervised pathology detection
- 8.4.2 Image synthesis for the explanation of black-box classifiers
- 8.4.3 Decoupled shape and appearance modeling for multimodal data
- 8.5 Future directions and research challenges
- 8.6 Summary
- References
- Part 2 Applications
- 9 Optimization of the MR imaging pipeline using simulation
- 9.1 Overview
- 9.2 History of MRI simulation
- 9.2.1 Diffusion MRI
- 9.3 The POSSUM simulation framework
- 9.3.1 POSSUM for MRI and functional MRI
- 9.3.1.1 Modeling artifacts
- 9.3.2 POSSUM for diffusion MRI
- 9.4 Applications
- 9.4.1 Motion correction algorithms for fMRI
- 9.4.1.1 MCFLIRT algorithm
- 9.4.1.2 Simulations
- 9.4.1.3 Results
- 9.4.2 Motion and eddy-current correction algorithms for diffusion MRI
- 9.4.3 Investigating the susceptibility-by-movement artifact
- 9.4.4 Investigating and optimizing image acquisition
- 9.4.5 Simulated data for machine learning
- 9.5 Future directions and research challenges
- References
- 10 Synthesis for image analysis across modalities
- 10.1 General motivation
- 10.2 Registration
- 10.2.1 Background
- 10.2.2 Similarity metrics and their limitations.
- 10.2.3 Synthesis-based similarity metrics
- 10.2.4 Other applications of synthesis-based registration
- 10.3 Segmentation
- 10.3.1 Background
- 10.3.2 Domain gap and synthesis-based solutions
- 10.4 Other directions and perspectives
- References
- 11 Medical image harmonization through synthesis
- 11.1 Introduction
- 11.2 Supervised techniques
- 11.2.1 Architecture and training
- 11.2.2 Using more information
- 11.3 Unsupervised techniques
- 11.3.1 Generative adversarial networks
- 11.3.2 Learning interpretable representations
- 11.3.3 One-/few-shot harmonization
- 11.3.4 Conclusion
- References
- 12 Medical image super-resolution with deep networks
- 12.1 Introduction to super-resolution
- 12.1.1 Basic concepts
- 12.1.2 Brief history of SR methods prior to deep networks
- 12.1.2.1 SR through mathematical modeling
- 12.1.2.2 Example-based SR
- 12.2 SR methods with deep networks
- 12.2.1 Data acquisition
- 12.2.1.1 Fully-supervised, unsupervised, and self-supervised learning
- 12.2.1.2 Multiple network inputs
- 12.2.2 Network architectures
- 12.2.2.1 General frameworks
- 12.2.2.2 Upsampling before or within networks
- 12.2.2.3 Components in networks
- 12.2.2.4 Progressive networks
- 12.2.3 Loss functions
- 12.2.3.1 Paired losses
- 12.2.3.2 Unpaired losses
- 12.3 Applications of super-resolution in medical images
- 12.3.1 Super-resolution in different image modalities
- 12.3.1.1 Super-resolution in CT
- 12.3.1.2 Super-resolution in MRI
- 12.3.1.3 Super-resolution in optical coherence tomography
- 12.3.1.4 Super-resolution in microscopy
- 12.3.2 Super-resolution used for different tasks
- 12.3.2.1 Super-resolution for image quality enhancement
- 12.3.2.2 Super-resolution for diagnostic acceptability
- 12.3.2.3 Super-resolution for segmentation
- 12.3.2.4 Super-resolution for clinical abnormality detection.