Computer aided drug design (CADD) : from ligand-based methods to structure-based approaches /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2022.
|
Colección: | Drug Discovery Update.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches
- Copyright
- Contents
- Contributors
- Chapter 1: Introduction to drug design and discovery
- Chapter outline
- 1. Definition and concept of drug design and discovery
- 2. Historical perspectives of drug discovery
- 3. Process, strategies, and stages of drug discovery and development
- 3.1. Discovery phase
- 3.2. Preclinical phase
- 3.3. Clinical phase
- 3.4. Approval and postapproval phases
- 4. Traditional and modern approaches to drug discovery and development
- 4.1. Virtual screening
- 4.2. High-throughput screening
- 4.3. Phenotypic screening
- 4.4. Structure-based drug design
- 4.5. Fragment-based drug design
- 4.6. Ligand-based drug design
- 5. Rational drug design (RDD) and CADD
- 5.1. Structure-based drug design (SBDD)
- 5.1.1. Molecular docking
- 5.1.2. Molecular dynamics
- 5.2. Ligand-based drug design (LBDD)
- 5.2.1. Quantitative structure-activity relationship (QSAR)
- 5.2.2. Pharmacophore modeling and similarity search
- 5.2.3. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction
- 6. Conclusion
- References
- Chapter 2: Fundamental considerations in drug design
- Chapter outline
- 1. Fundamentals of rational drug design (RDD)
- 1.1. Rational drug design
- 1.2. Structure-based drug design (SBDD)
- 1.3. Ligand-based drug design (LBDD)
- 2. Concepts of physicochemical properties
- 2.1. Structural properties and stereochemistry
- 2.2. Drug receptors and receptor theories
- 2.2.1. Occupation theory
- 2.2.2. Rate theory
- 2.2.3. Induced fit theory
- 2.3. Pharmacokinetics and pharmacodynamics
- 2.4. SARs and QSARs
- 2.5. Prodrugs and drug metabolism
- 2.6. Metabolite antagonism and enzyme inhibition
- 2.7. Nucleic acid-based drug design
- 2.8. Lead compounds.
- 2.9. Peptidomimetics and analog design
- 2.10. Reverse pharmacology and drug repurposing strategies
- 3. Fundamentals of computer-aided drug design (CADD)
- 3.1. Structure-based drug design (SBDD)
- 3.1.1. Docking
- 3.1.2. Molecular dynamics (MD)
- 3.1.3. Structure-based pharmacophore modeling
- 3.2. Ligand-based drug design (LBDD)
- 3.2.1. Similarity search
- 3.2.2. QSAR modeling
- 3.2.3. Ligand-based pharmacophore modeling
- 3.3. Virtual screening techniques
- 3.3.1. Structure- or target-based virtual screening
- 3.3.2. Successful applications of virtual screening
- 3.4. ADME analysis and measures of drug-likeness
- 4. Conclusion
- References
- Chapter 3: Ligand-based drug design (LBDD)
- Chapter outline
- 1. Introduction
- 2. Random and nonrandom screening
- 2.1. Drug metabolism studies
- 2.2. Serendipity method
- 2.3. Clinical observations
- 3. Drug discovery process
- 3.1. Ligand-based drug design (LBDD)
- 3.2. Structure-based drug design (SBDD)
- 4. Combinatorial chemistry
- 4.1. Unbiased library
- 4.2. Biased library
- 4.2.1. Solid-phase synthesis
- 4.2.2. Solution-phase synthesis
- 5. Lead modifications and optimization approaches
- 5.1. Pharmacophore
- 5.2. Structure-activity relationships (SARs)
- 6. Stereochemistry of drug molecules
- 6.1. Importance in drug action
- 6.2. Stereoselectivity in drug-receptor interaction
- 6.3. Stereospecific aspects in drug design
- 6.4. Stereochemistry in biological processes
- 6.5. Significance of stereoselectivity
- 7. Bioisosterism
- 7.1. Need and use of bioisosteric replacements
- 7.2. Classification of bioisosterism11-14
- 7.2.1. Classical bioisosteres
- Monovalent bioisosteres
- Divalent bioisosteres
- Trivalent atoms or groups
- Tetrasubstituted atoms
- Ring equivalents
- 7.2.2. Nonclassical bioisosteres
- 8. Drug metabolism2,16,17
- 8.1. Objectives.
- 8.2. Prodrugs18
- 8.2.1. Objectives
- 8.2.2. Classifications of prodrugs
- Based on the type of carrier moiety
- Carrier-linked prodrugs
- Bioprecursor prodrugs
- Based on cellular site of bioactivation
- Type I
- Type II
- 8.2.3. Essential functionalities associated with prodrugs scheming
- 8.3. Retrometabolism-based drug design (RMDD)
- 8.3.1. Principle
- 8.3.2. Soft drug design
- 8.3.3. Chemical delivery system
- 9. Virtual high-throughput screening (vHTS)
- 9.1. Tools for virtual high-throughput screening (vHTS)
- 9.1.1. Octopus
- 9.1.2. PyRx
- 9.1.3. Raccoon2
- 9.2. Techniques for virtual high-throughput screening (vHTS)
- 9.2.1. Ligand-based vHTS
- 9.2.2. Structure-based vHTS
- 9.3. Lipinskis rule
- 9.4. Veber rule
- 9.5. ADMET screening
- 9.6. Toxicity prediction
- 9.7. Docking-based virtual screening (DBVS)
- 9.8. Pharmacophore-based virtual screening (PBVS)
- 9.8.1. Water thermodynamics
- 9.8.2. Binding free energy calculations
- Binding kinetics
- Binding site accessibility and drug size
- Conformational fluctuations
- Electrostatics
- Hydrophobicity and water
- Residence time
- Optimizing residence time
- 10. Conclusion
- Acknowledgment
- References
- Chapter 4: Quantitative structure-activity relationships (QSARs)
- Chapter outline
- 1. QSAR: Fundamentals and historical background
- 1.1. Definition
- 1.2. Historical background
- 2. Hammett equation
- 3. Hansch-Fujita model
- 4. Free and Wilson method
- 5. Protocols for managing a QSAR study
- 6. Conditions for the validity of the model
- 6.1. Regarding the variable selection
- 6.2. Regarding the variable validation
- 6.3. Regarding the model validation
- 6.4. Regarding the amount of variables
- 6.5. Regarding the biological validation
- 6.6. Regarding model recycling
- 7. 3D-QSAR
- 7.1. CoMFA
- 7.2. CoMSIA
- 7.3. SOMFA.
- 7.4. GRID/GOLPE
- 7.5. HASL
- 7.6. COMPASS
- 8. Case study
- 9. Conclusion
- References
- Chapter 5: Fundamentals of molecular modeling in drug design
- Chapter outline
- 1. Fundamentals of computational chemistry
- 2. Basic concepts of quantum mechanics
- 3. Sketch approach, conversion of 2D structures in 3D form, and generation of 3D coordinates
- 4. Molecular dynamics simulation and its components
- 4.1. Force fields
- 4.2. Geometry optimization
- 4.3. Energy minimization
- 4.4. Conformational search
- 4.5. Genetic algorithms
- 4.6. Monte Carlo simulation
- 4.7. Artificial intelligence methods
- 4.8. Pharmacophore identification and molecular modeling
- 5. Molecular recognition in drug design
- 6. Thermodynamic consideration of drug designing
- 6.1. Methods of thermodynamic measurement for bimolecular interactions
- 6.1.1. Direct method
- 6.1.2. Indirect method by Vant Hoff analysis
- 6.2. Physical basis of intermolecular interaction
- 6.2.1. Total energy of intermolecular interactions
- 6.2.2. Estimating individual group components in ligand receptor interactions and cooperativity and thumb rules
- 7. Conclusion and future scope
- References
- Chapter 6: Pharmacophore modeling in drug design
- Chapter outline
- 1. Introduction
- 2. Computer-aided drug design
- 3. Pharmacophore concept
- 3.1. Ligand-based pharmacophore
- 3.2. Structure-based pharmacophore (SBP)
- 4. Pharmacophore model-based virtual screening (VS)
- 5. Pharmacophore elements and representation
- 6. Generation of pharmacophore models from receptor-ligand complex
- 7. Applications of pharmacophores in ADME-Tox
- 7.1. Pharmacophore-guided drug target identification
- 7.2. Multitargets by pharmacophore
- 7.3. Possible applications of multitarget ligands
- 7.3.1. Drug resistance
- 7.3.2. Prospective drug repositioning
- 8. Conclusion.