Cargando…

Engineered polymer nanocomposites for energy harvesting applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rahul, M. T.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Engineered Polymer Nanocomposites for Energy Harvesting Applications
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • 1 Recent advances in vinylidene fluoride copolymers and their applications as nanomaterials
  • 1.1 Introduction
  • 1.2 Different classes of ferroelectric polymers
  • 1.3 PVDF and VDF copolymers and terpolymers
  • 1.3.1 PVDF homopolymer
  • 1.3.2 VDF co-/terpolymers
  • 1.3.2.1 P(VDF-co-HFP) copolymers
  • 1.3.2.2 P(VDF-co-CTFE) copolymers
  • 1.3.2.3 P(VDF-co-trifluoroethylene) copolymers
  • 1.3.2.4 P(VDF-co-2,3,3,3-tetrafluoropropene) copolymers
  • 1.3.2.5 P(VDF-ter-TrFE-ter-CTFE) terpolymers
  • 1.3.2.6 P(VDF-ter-TrFE-ter-CFE) terpolymers
  • 1.3.2.7 Other P(VDF-ter-TrFE-ter-M) terpolymers
  • 1.4 Properties of PVDF and VDF copolymers
  • 1.4.1 Mechanical and thermal properties
  • 1.4.2 Electrical properties
  • 1.5 Applications
  • 1.5.1 Sonars
  • 1.5.2 Actuators and sensors
  • 1.5.3 Others
  • 1.6 Conclusion
  • Acknowledgments
  • References
  • 2 Characterization methods used for the identification of ferroelectric beta phase of fluoropolymers
  • 2.1 Introduction
  • 2.2 Processing of beta phase using different methods
  • 2.2.1 Melt method
  • 2.2.2 Quenching method
  • 2.2.3 Pressing and folding operation
  • 2.2.4 Additives
  • 2.3 Characterization techniques
  • 2.3.1 Differential scanning calorimetry
  • 2.3.1.1 Difference between poled and unpoled DSC curves
  • 2.3.2 Fourier-transform infrared spectroscopy
  • 2.3.2.1 Calculation of individual beta and gamma phase
  • 2.3.3 X-ray diffraction
  • 2.3.4 Ferroelectric hysteresis loop/PE loop
  • 2.3.4.1 Ferroelasticity
  • 2.3.5 Dielectric properties
  • 2.4 Conclusion
  • Conflict of interest
  • References
  • 3 Polymer/metal oxides nanocomposites-based piezoelectric energy-harvesters
  • 3.1 Introduction
  • 3.2 Polymer-based nanogenerators.
  • 3.2.1 Polyvinyldene fluoride-based piezoelectric nanogenerators
  • 3.2.2 Polyvinyldene fluoride-trifluoroethylene/multiwalled carbon nanotubes-based piezoelectric nanogenerators
  • 3.2.3 Polyvinylidene fluoride-hexafluoropropylene/multiwalled carbon nanotubes-based piezoelectric nanogenerator
  • 3.2.4 Poly-l-lactic acid nanofiber-based piezoelectric nanogenerator
  • 3.2.5 Nylon 11/cellulose nanocrystal-based piezoelectric nanogenerator
  • 3.2.6 Cellulose-based energy generator
  • 3.2.7 Gelatin nanofiber-based piezoelectric pressure sensor
  • 3.3 Polymer-metal oxide nanocomposites-based piezoelectric energy harvesters
  • 3.3.1 Lead zirconate titanate-polymer nanocomposites
  • 3.3.2 Barium titanate-polymer nanocomposites
  • 3.3.3 Zinc oxide-polymer nanocomposite
  • 3.3.4 Lead magnesium niobate-lead titanate-polymer nanocomposites
  • 3.3.5 Other metal oxide-polymer nanocomposites
  • 3.4 Conclusion
  • References
  • 4 2D materials-polymer composites for developing piezoelectric energy-harvesting devices
  • 4.1 Introduction
  • 4.1.1 Energy-harvesting
  • 4.1.2 Piezoelectricity
  • 4.1.3 Piezoelectric materials
  • 4.1.3.1 Piezoceramics
  • 4.1.3.2 Piezo single crystals
  • 4.1.3.3 Piezopolymers
  • 4.1.4 Composites
  • 4.1.4.1 Polymer-based composites
  • 4.1.5 2-dimensional materials
  • 4.2 Role of 2-dimensional materials in polymer composites for piezoelectric-based energy-harvesting devices
  • 4.2.1 Common device configuration for piezoelectric energy-harvesting
  • 4.2.2 2-dimensional-materials and polymer composites for piezoelectric energy-harvesting devices
  • 4.3 Applications
  • 4.4 Conclusion
  • References
  • 5 Non-fluorinated piezoelectric polymers and their composites for energy harvesting applications
  • 5.1 Introduction
  • 5.2 Piezoelectricity in semicrystalline polymers
  • 5.3 Piezoelectricity in natural polymers.
  • 5.4 Piezoelectricity in amorphous polymers
  • 5.5 Energy-harvesting applications
  • 5.5.1 Polyamides
  • 5.5.2 Poly(L-lactic acid)
  • 5.5.3 Poly(caprolactone)
  • 5.5.4 Poly(acrylonitrile)
  • 5.5.5 Cellulose
  • 5.5.6 Chitin/chitosan
  • 5.5.7 Collagen
  • 5.5.8 Silk
  • 5.5.9 Other polymers
  • 5.6 Summary and future outlook
  • References
  • 6 Polysaccharide-based nanocomposites for energy-harvesting nanogenerators
  • 6.1 Introduction
  • 6.2 Piezoelectric nanogenerators
  • 6.2.1 Operation modes
  • 6.3 Triboelectric nanogenerators
  • 6.3.1 Working modes of triboelectric nanogenerators
  • 6.3.1.1 Contact-separation mode
  • 6.3.1.2 Lateral sliding mode
  • 6.3.1.3 Free-standing mode
  • 6.3.1.4 Single-electrode mode
  • 6.4 Nanocellulose-based energy-harvesting nanogenerators
  • 6.4.1 Bacterial cellulose-based triboelectric nanogenerators
  • 6.4.2 Bacterial cellulose-based piezoelectric nanogenerators
  • 6.4.3 Nanocellulose-based hybrid piezoelectric nanogenerator-triboelectric nanogenerator
  • 6.5 Chitin and chitosan-based energy-harvesting nanogenerators
  • 6.5.1 Chitin-based triboelectric nanogenerators
  • 6.5.2 Chitin based piezoelectric nanogenerators
  • 6.6 Porous nanocellulose/chitosan aerogel film-based triboelectric nanogenerators
  • 6.7 Miscellaneous polysaccharides-based energy-harvesting nanogenerators
  • 6.7.1 Pullulan-based triboelectric nanogenerator
  • 6.7.2 Sodium alginate based piezoelectric nanogenerators
  • 6.7.3 Starch-based triboelectric nanogenerators
  • 6.8 Conclusion and future outlook
  • References
  • 7 Polymer-based composite materials for triboelectric energy harvesting
  • 7.1 Introduction
  • 7.2 Material selection
  • 7.2.1 Triboelectric series
  • 7.2.2 Triboelectrification
  • 7.2.3 Material transfer mechanism and polymer electrets
  • 7.3 Polymer and Composite polymer materials.
  • 7.4 Composite polymer-based triboelectric nanogenerator applications
  • 7.5 Conclusion
  • Acknowledgment
  • References
  • 8 Magnetoelectric polymer nanocomposites for energy harvesting
  • 8.1 Introduction
  • 8.2 Magnetoelectric materials
  • 8.3 Materials
  • 8.3.1 Magnetic/magnetostrictive materials
  • 8.3.2 Ferroelectric materials
  • 8.3.3 Ferroelectric polymers
  • 8.3.3.1 Polyvinylidene fluoride and its copolymers
  • 8.4 Types of polymer-based magnetoelectric composites
  • 8.5 Fabrication methods of polymer-based multiferroic composites
  • 8.5.1 Solvent casting
  • 8.5.2 Electrospinning
  • 8.6 Energy harvesting aspects of magnetoelectric material
  • 8.7 Conclusion
  • References
  • 9 Hybrid composites with shape memory alloys and piezoelectric thin layers
  • 9.1 Introduction
  • 9.2 Multiphysics behavior modeling and characterization
  • 9.2.1 Modeling of the shape memory alloys thermomechanical behavior
  • 9.2.2 Modeling of the ferroelectric and ferroelastic behaviors of piezoelectric materials
  • 9.2.3 Modeling of the thermoelectromechanical response of hybrid shape memory alloys/piezo composites
  • 9.3 Multilayer manufacturing and characterization
  • 9.3.1 First devices
  • 9.3.2 Processing of the shape memory alloys/poly(vinylidene fluoride-trifluoroethylene) hybrid composite
  • 9.4 Finite element analysis of shape memory alloys/piezo composite response for energy harvesting
  • 9.5 Harvester manufacturing, instrumentation, and performance analysis
  • 9.5.1 Energy harvesting from hybrid composite (shape memory alloys/piezo)
  • 9.5.2 Thermal-mechanical-electrical energy harvesting
  • 9.5.3 Electrothermomechanical characterization bench
  • 9.5.4 Electronic circuits for piezoelectric energy harvesting
  • 9.6 Conclusion
  • References
  • 10 Designing piezo- and pyroelectric energy harvesters
  • 10.1 Introduction
  • 10.2 Piezoelectric nanogenerator.
  • 10.2.1 Inorganic piezoelectric materials
  • 10.2.1.1 Zinc oxide nanowires-based piezoelectric nanogenerators
  • 10.2.1.2 Polycrystalline lead zirconate titanate-based piezoelectric nanogenerators
  • 10.2.1.3 Composite-based materials-based piezoelectric nanogenerators
  • 10.2.2 Organic piezoelectric materials
  • 10.2.3 Biodegradable materials-based piezoelectric nanogenerators
  • 10.3 Pyroelectric nanogenerator
  • 10.3.1 The progress of pyroelectric nanogenerator
  • 10.4 Coupled piezo- and pyroelectric nanogenerator
  • 10.5 Conclusion and future outlook
  • Acknowledgment
  • Conflicts of interest
  • References
  • Index
  • Back Cover.