Engineered polymer nanocomposites for energy harvesting applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Engineered Polymer Nanocomposites for Energy Harvesting Applications
- Copyright Page
- Contents
- List of contributors
- Preface
- 1 Recent advances in vinylidene fluoride copolymers and their applications as nanomaterials
- 1.1 Introduction
- 1.2 Different classes of ferroelectric polymers
- 1.3 PVDF and VDF copolymers and terpolymers
- 1.3.1 PVDF homopolymer
- 1.3.2 VDF co-/terpolymers
- 1.3.2.1 P(VDF-co-HFP) copolymers
- 1.3.2.2 P(VDF-co-CTFE) copolymers
- 1.3.2.3 P(VDF-co-trifluoroethylene) copolymers
- 1.3.2.4 P(VDF-co-2,3,3,3-tetrafluoropropene) copolymers
- 1.3.2.5 P(VDF-ter-TrFE-ter-CTFE) terpolymers
- 1.3.2.6 P(VDF-ter-TrFE-ter-CFE) terpolymers
- 1.3.2.7 Other P(VDF-ter-TrFE-ter-M) terpolymers
- 1.4 Properties of PVDF and VDF copolymers
- 1.4.1 Mechanical and thermal properties
- 1.4.2 Electrical properties
- 1.5 Applications
- 1.5.1 Sonars
- 1.5.2 Actuators and sensors
- 1.5.3 Others
- 1.6 Conclusion
- Acknowledgments
- References
- 2 Characterization methods used for the identification of ferroelectric beta phase of fluoropolymers
- 2.1 Introduction
- 2.2 Processing of beta phase using different methods
- 2.2.1 Melt method
- 2.2.2 Quenching method
- 2.2.3 Pressing and folding operation
- 2.2.4 Additives
- 2.3 Characterization techniques
- 2.3.1 Differential scanning calorimetry
- 2.3.1.1 Difference between poled and unpoled DSC curves
- 2.3.2 Fourier-transform infrared spectroscopy
- 2.3.2.1 Calculation of individual beta and gamma phase
- 2.3.3 X-ray diffraction
- 2.3.4 Ferroelectric hysteresis loop/PE loop
- 2.3.4.1 Ferroelasticity
- 2.3.5 Dielectric properties
- 2.4 Conclusion
- Conflict of interest
- References
- 3 Polymer/metal oxides nanocomposites-based piezoelectric energy-harvesters
- 3.1 Introduction
- 3.2 Polymer-based nanogenerators.
- 3.2.1 Polyvinyldene fluoride-based piezoelectric nanogenerators
- 3.2.2 Polyvinyldene fluoride-trifluoroethylene/multiwalled carbon nanotubes-based piezoelectric nanogenerators
- 3.2.3 Polyvinylidene fluoride-hexafluoropropylene/multiwalled carbon nanotubes-based piezoelectric nanogenerator
- 3.2.4 Poly-l-lactic acid nanofiber-based piezoelectric nanogenerator
- 3.2.5 Nylon 11/cellulose nanocrystal-based piezoelectric nanogenerator
- 3.2.6 Cellulose-based energy generator
- 3.2.7 Gelatin nanofiber-based piezoelectric pressure sensor
- 3.3 Polymer-metal oxide nanocomposites-based piezoelectric energy harvesters
- 3.3.1 Lead zirconate titanate-polymer nanocomposites
- 3.3.2 Barium titanate-polymer nanocomposites
- 3.3.3 Zinc oxide-polymer nanocomposite
- 3.3.4 Lead magnesium niobate-lead titanate-polymer nanocomposites
- 3.3.5 Other metal oxide-polymer nanocomposites
- 3.4 Conclusion
- References
- 4 2D materials-polymer composites for developing piezoelectric energy-harvesting devices
- 4.1 Introduction
- 4.1.1 Energy-harvesting
- 4.1.2 Piezoelectricity
- 4.1.3 Piezoelectric materials
- 4.1.3.1 Piezoceramics
- 4.1.3.2 Piezo single crystals
- 4.1.3.3 Piezopolymers
- 4.1.4 Composites
- 4.1.4.1 Polymer-based composites
- 4.1.5 2-dimensional materials
- 4.2 Role of 2-dimensional materials in polymer composites for piezoelectric-based energy-harvesting devices
- 4.2.1 Common device configuration for piezoelectric energy-harvesting
- 4.2.2 2-dimensional-materials and polymer composites for piezoelectric energy-harvesting devices
- 4.3 Applications
- 4.4 Conclusion
- References
- 5 Non-fluorinated piezoelectric polymers and their composites for energy harvesting applications
- 5.1 Introduction
- 5.2 Piezoelectricity in semicrystalline polymers
- 5.3 Piezoelectricity in natural polymers.
- 5.4 Piezoelectricity in amorphous polymers
- 5.5 Energy-harvesting applications
- 5.5.1 Polyamides
- 5.5.2 Poly(L-lactic acid)
- 5.5.3 Poly(caprolactone)
- 5.5.4 Poly(acrylonitrile)
- 5.5.5 Cellulose
- 5.5.6 Chitin/chitosan
- 5.5.7 Collagen
- 5.5.8 Silk
- 5.5.9 Other polymers
- 5.6 Summary and future outlook
- References
- 6 Polysaccharide-based nanocomposites for energy-harvesting nanogenerators
- 6.1 Introduction
- 6.2 Piezoelectric nanogenerators
- 6.2.1 Operation modes
- 6.3 Triboelectric nanogenerators
- 6.3.1 Working modes of triboelectric nanogenerators
- 6.3.1.1 Contact-separation mode
- 6.3.1.2 Lateral sliding mode
- 6.3.1.3 Free-standing mode
- 6.3.1.4 Single-electrode mode
- 6.4 Nanocellulose-based energy-harvesting nanogenerators
- 6.4.1 Bacterial cellulose-based triboelectric nanogenerators
- 6.4.2 Bacterial cellulose-based piezoelectric nanogenerators
- 6.4.3 Nanocellulose-based hybrid piezoelectric nanogenerator-triboelectric nanogenerator
- 6.5 Chitin and chitosan-based energy-harvesting nanogenerators
- 6.5.1 Chitin-based triboelectric nanogenerators
- 6.5.2 Chitin based piezoelectric nanogenerators
- 6.6 Porous nanocellulose/chitosan aerogel film-based triboelectric nanogenerators
- 6.7 Miscellaneous polysaccharides-based energy-harvesting nanogenerators
- 6.7.1 Pullulan-based triboelectric nanogenerator
- 6.7.2 Sodium alginate based piezoelectric nanogenerators
- 6.7.3 Starch-based triboelectric nanogenerators
- 6.8 Conclusion and future outlook
- References
- 7 Polymer-based composite materials for triboelectric energy harvesting
- 7.1 Introduction
- 7.2 Material selection
- 7.2.1 Triboelectric series
- 7.2.2 Triboelectrification
- 7.2.3 Material transfer mechanism and polymer electrets
- 7.3 Polymer and Composite polymer materials.
- 7.4 Composite polymer-based triboelectric nanogenerator applications
- 7.5 Conclusion
- Acknowledgment
- References
- 8 Magnetoelectric polymer nanocomposites for energy harvesting
- 8.1 Introduction
- 8.2 Magnetoelectric materials
- 8.3 Materials
- 8.3.1 Magnetic/magnetostrictive materials
- 8.3.2 Ferroelectric materials
- 8.3.3 Ferroelectric polymers
- 8.3.3.1 Polyvinylidene fluoride and its copolymers
- 8.4 Types of polymer-based magnetoelectric composites
- 8.5 Fabrication methods of polymer-based multiferroic composites
- 8.5.1 Solvent casting
- 8.5.2 Electrospinning
- 8.6 Energy harvesting aspects of magnetoelectric material
- 8.7 Conclusion
- References
- 9 Hybrid composites with shape memory alloys and piezoelectric thin layers
- 9.1 Introduction
- 9.2 Multiphysics behavior modeling and characterization
- 9.2.1 Modeling of the shape memory alloys thermomechanical behavior
- 9.2.2 Modeling of the ferroelectric and ferroelastic behaviors of piezoelectric materials
- 9.2.3 Modeling of the thermoelectromechanical response of hybrid shape memory alloys/piezo composites
- 9.3 Multilayer manufacturing and characterization
- 9.3.1 First devices
- 9.3.2 Processing of the shape memory alloys/poly(vinylidene fluoride-trifluoroethylene) hybrid composite
- 9.4 Finite element analysis of shape memory alloys/piezo composite response for energy harvesting
- 9.5 Harvester manufacturing, instrumentation, and performance analysis
- 9.5.1 Energy harvesting from hybrid composite (shape memory alloys/piezo)
- 9.5.2 Thermal-mechanical-electrical energy harvesting
- 9.5.3 Electrothermomechanical characterization bench
- 9.5.4 Electronic circuits for piezoelectric energy harvesting
- 9.6 Conclusion
- References
- 10 Designing piezo- and pyroelectric energy harvesters
- 10.1 Introduction
- 10.2 Piezoelectric nanogenerator.
- 10.2.1 Inorganic piezoelectric materials
- 10.2.1.1 Zinc oxide nanowires-based piezoelectric nanogenerators
- 10.2.1.2 Polycrystalline lead zirconate titanate-based piezoelectric nanogenerators
- 10.2.1.3 Composite-based materials-based piezoelectric nanogenerators
- 10.2.2 Organic piezoelectric materials
- 10.2.3 Biodegradable materials-based piezoelectric nanogenerators
- 10.3 Pyroelectric nanogenerator
- 10.3.1 The progress of pyroelectric nanogenerator
- 10.4 Coupled piezo- and pyroelectric nanogenerator
- 10.5 Conclusion and future outlook
- Acknowledgment
- Conflicts of interest
- References
- Index
- Back Cover.