Cargando…

Recycling and reusing of engineering materials recycling for sustainable developments /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Khan, Waseem S., author
Otros Autores: Asmatulu, Eylem, Uddin, Md. Nizam, Asmatulu, Ramazan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Recycling and Reusing of Engineering Materials
  • Recycling and Reusing of Engineering Materials: Recycling for Sustainable Developments
  • Copyright
  • Contents
  • 1
  • Introduction
  • 1. Introduction
  • 1.1 General background
  • 1.2 Recycling: an overview and growth
  • 1.3 Recent advances in recycling
  • 1.3.1 Recycling of petroleum-based wastes
  • 1.3.2 Cracking processes
  • 1.4 Recycling of agricultural wastes
  • 1.5 Classification of waste streams
  • 1.6 Legislative policies on environment and societal issues
  • 1.6.1 Federal policy on recycling
  • 1.6.2 Societal impact of recycling
  • 1.7 Recycling priorities, importance, and goals
  • 1.8 Life cycle assessment of recycled materials
  • 1.9 Energy saving of recycled materials
  • 1.10 Economic benefits of recycling
  • 2. Market analysis of recycled materials
  • 3. Conclusions
  • References
  • 2
  • Environmental impacts of recycling
  • 1. Introduction
  • 2. Toxic materials and sources
  • 3. Heavy metals
  • 4. Heavy metals and their toxicity mechanisms
  • 4.1 Arsenic
  • 4.2 Cadmium
  • 4.3 Chromium
  • 4.4 Lead
  • 4.5 Mercury
  • 5. Toxic compounds
  • 6. Handling of toxic materials
  • 6.1 Safety precautions for handling toxic materials
  • 7. Storing toxic materials
  • 8. Transporting toxic materials
  • 9. Reusing toxic materials
  • 10. Conclusions
  • References
  • 3
  • Wet and dry recycling processes
  • 1. Introduction
  • 2. Dry recycling processes
  • 2.1 Size reduction and characterization of wastes
  • 2.1.1 Size reduction and classification
  • 2.1.2 Characterization
  • 2.2 Hand-sorting
  • 2.3 Dry screening
  • 2.4 Electrostatic separation
  • 2.5 Magnetic separation
  • 2.6 Eddy current separation
  • 2.7 Optical and pneumatic separation
  • 2.8 Melting temperature-based centrifugal separation
  • 2.9 Shredding
  • 3. Wet recycling processes
  • 3.1 Wet screening
  • 3.2 Gravity separation.
  • 3.2.1 Heavy media separation
  • 3.2.2 Shaking table separation
  • 3.2.3 Spiral concentrator
  • 3.2.4 Multigravity separation
  • 3.3 Centrifugal separation
  • 3.4 Froth flotation
  • 3.5 Hydrocyclone
  • 3.6 Biological separation
  • 3.7 Chemical leaching
  • 4. Conclusions
  • References
  • 4
  • Recycling and reusing of papers
  • 1. Introduction
  • 1.1 General background
  • 1.2 Paper making and recycling
  • 2. Paper recycling facts
  • 2.1 It saves natural resources
  • 2.2 It reduces the waste disposal cost
  • 2.3 Recycling saves energy
  • 2.4 It saves landfill space
  • 2.5 Recycling reduces air and water pollution
  • 2.6 Recycling paper creates jobs
  • 3. Processing of recycled paper
  • 3.1 Phase 1
  • 3.2 Phase 2
  • 3.3 Phase 3
  • 4. Properties of fibers from recovered paper
  • 5. Paper aging and degradation
  • 6. Hazardous substance in recycled paper
  • 7. Conclusions
  • References
  • 5
  • Recycling and reusing of construction materials
  • 1. Introduction
  • 2. Waste materials in construction
  • 3. Construction waste recycling
  • 3.1 Brick
  • 3.2 Asphalt
  • 3.3 Concrete
  • 3.4 Ferrous metal
  • 3.5 Masonry
  • 3.6 Nonferrous metals
  • 3.7 Paper and cardboard
  • 3.8 Glass
  • 3.9 Plastics
  • 3.10 Timber
  • 4. Construction waste minimization
  • 5. Conclusions
  • References
  • 6
  • Recycling and reusing of glasses and ceramics
  • 1. Introduction
  • 2. Glass recycling facts
  • 3. Glass recycling statistics
  • 4. Glass and ceramic recycling: challenges and opportunities
  • 5. Processing of recycled glasses and ceramics
  • 5.1 Recyclable glasses and ceramics
  • 5.2 Nonrecyclable glass and ceramics
  • 5.3 Step-by-step process of recycling glass
  • 5.3.1 Step 1: sorting
  • 5.3.2 Step 2: breaking
  • 5.3.3 Step 3: trommel
  • 5.3.4 Step 4: bed drier fluidization
  • 5.3.5 Step 5: rotary screen (primary stage)
  • 5.3.6 Step 6: pulverizer.
  • 5.3.7 Step 7: rotary screen (secondary stage)
  • 5.3.8 Step 8: the final products
  • 6. Advantages and disadvantages of recycling glass and ceramics
  • 6.1 Advantages of recycling glass and ceramics
  • 6.2 Disadvantages of glass and ceramic recycling
  • 7. Advanced uses of recycled glasses and ceramics
  • 8. Conclusions
  • References
  • 7
  • Recycling and reusing of polymers and plastics
  • 1. Introduction
  • 1.1 Background
  • 1.2 Solid plastic waste
  • 2. Hierarchy of waste management
  • 2.1 Prevention
  • 2.2 Reuse
  • 2.3 Recycling
  • 2.4 Energy recovery
  • 2.5 Disposal and landfill
  • 3. Mechanical and chemical recycling
  • 3.1 Mechanical recycling
  • 3.1.1 Primary mechanical recycling
  • 3.1.2 Secondary mechanical recycling
  • 3.1.3 Challenges for mechanical recycling
  • 3.1.3.1 Polymer incompatibility
  • 3.1.3.2 Polymer degradation
  • 3.1.3.3 Additives
  • 3.1.3.4 Case of PET
  • 3.1.3.5 Postconsumer PET by mechanical recycling
  • 3.2 Chemical recycling
  • 3.2.1 Hydrogenation
  • 3.2.2 Gasification
  • 3.2.3 Chemolysis (solvolysis)
  • 3.2.4 Hydrolysis
  • 3.2.5 Methanolysis
  • 3.2.6 Ammonolysis
  • 3.2.7 Aminolysis
  • 3.2.8 Chemical recycling glycolysis
  • 3.2.8.1 Solvent-assisted glycolysis
  • 3.2.8.2 Supercritical glycolysis
  • 3.2.8.3 Microwave-assisted glycolysis
  • 3.2.8.4 Catalytic glycolysis
  • 3.3 Other recycling methods for plastics and polymers
  • 3.3.1 Catalytic and thermal depolymerization
  • 3.3.1.1 Limitations of thermal depolymerization
  • 3.3.2 Dissolution and reprecipitation
  • 3.3.3 GreenMantra technologies
  • 4. Applications of recycled thermoplastics
  • 4.1 High-density polyethylene
  • 4.2 Low-density polyethylene (LDPE)
  • 4.3 Polyvinyl chloride (PVC)
  • 4.4 PET
  • 4.5 Polypropylene
  • 5. Conclusions
  • References
  • 8
  • Recycling and reusing of thermoplastic and thermoset composites
  • 1. Introduction
  • 1.1 Background.
  • 2. Recycling techniques for thermoset and thermoplastic
  • 3. Literature review
  • 3.1 Recycling waste thermoplastic for energy-efficient construction materials
  • 3.2 Experimental evaluation of a fully recyclable thermoplastic composite
  • 3.3 Processing and recycling of thermoplastic composite fiber/peek aerospace parts
  • 4. Recent recycling results and discussion
  • 4.1 Recycling waste thermoplastic for energy-efficient construction materials
  • 4.2 Experimental evaluation of a fully recyclable thermoplastic composite
  • 4.3 Processing and recycling of thermoplastic composite fiber/PEEK aerospace parts
  • 5. Conclusions
  • References
  • 9
  • Recycling and reusing of metals and alloys
  • 1. Introduction
  • 1.1 General background
  • 1.2 Ferrous metals and scraps
  • 1.3 Difference between iron and steel for recycling
  • 2. Processes for recycling scrap ferrous materials
  • 2.1 Types of scrap ferrous materials
  • 2.2 Hazardous chemical issues in shipbreaking operations
  • 2.3 Methods of calculating recycled materials
  • 2.4 Sorting scrap ferrous materials
  • 2.5 Melting of virgin steelmaking and recycling scrap materials
  • 2.5.1 Virgin steelmaking process
  • 2.5.2 Recycling ferrous materials steelmaking processes
  • 3. Relationship between recycling and environment
  • 4. New establishments
  • 5. Conclusions
  • References
  • 10
  • Recycling and reusing of nonferrous metals
  • 1. Introduction
  • 2. Technology for recycling nonferrous metals
  • 2.1 Electrowinning
  • 2.2 Precipitation
  • 2.3 Metal sensors
  • 3. Benefit of recycling and reusing nonferrous metals
  • 3.1 Impact on energy conservation
  • 3.2 Environmental impacts
  • 3.3 Economic impacts
  • 3.4 Social impacts
  • 3.5 Health impacts
  • 4. Recycling strategy of some nonferrous metals
  • 4.1 Aluminum
  • 4.2 Copper
  • 4.3 Zinc
  • 4.4 Lead
  • 4.4.1 Acid drainage
  • 4.4.2 Breaking and sorting.
  • 4.4.3 Desulfurization of paste
  • 4.4.4 Secondary smelting
  • 5. Conclusions
  • References
  • 11
  • Recycling of electronic wastes
  • 1. Introduction
  • 2. Human toxicity of hazardous substances in e-waste
  • 3. Environmental impacts of e-waste through treatment processes
  • 4. Landfill disposal
  • 5. Recycling of e-waste
  • 5.1 Step 1: collection
  • 5.2 Step 2: sorting/dismantling
  • 5.3 Step 3: processing and manufacturing
  • 6. Mechanical recycling techniques
  • 7. Electromechanical separation process
  • 7.1 Shredding and washing
  • 7.2 Magnetic separation
  • 7.3 Eddy current separators
  • 7.4 Corona electrostatic separator
  • 7.5 Triboelectrostatic separation
  • 7.6 Gravity separation
  • 8. Chemical recycling techniques
  • 9. Thermal recycling processes
  • 9.1 Pyrolysis process
  • 9.2 Thermal treatment
  • 10. Conclusions
  • References
  • 12
  • Recycling and reusing of used lubricating oils
  • 1. Introduction
  • 1.1 Lubricating oil
  • 1.2 Properties of lubricating oil
  • 1.2.1 Oil viscosity
  • 1.2.2 Density and specific gravity of lubricating oil
  • 1.2.3 Temperature-related characteristics of lubricating oil
  • 1.2.3.1 Pour point and cloud point
  • 1.2.3.2 Flash point and fire point
  • 1.2.3.3 Neutralization number
  • 1.2.3.4 Volatility and evaporation
  • 1.2.3.5 Water content
  • 1.2.3.6 Demulsibility
  • 1.2.3.7 Oxidation stability
  • 1.2.3.8 Thermal stability
  • 1.2.3.9 Carbon residue
  • 1.2.4 Degradation of lubricating oil
  • 1.2.5 Oxidation
  • 1.2.6 Thermal degradation
  • 1.2.7 Corrosion
  • 1.2.8 Contamination
  • 2. Recycling of used oil
  • 2.1 Physical methods
  • 2.1.1 Dewater/defuel
  • 2.1.2 Deasphalting (desludging)
  • 2.1.3 Fractionation
  • 2.1.4 Finishing
  • 2.2 Solvent extraction
  • 2.3 Acid-clay process
  • 2.4 Distillation-clay method
  • 2.5 Activated charcoal-clay method
  • 2.6 Vacuum distillation with hydrotreating
  • 3. Conclusions.