Biomedical sensors and smart sensing a beginner's guide /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, UK :
Academic Press,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Biomedical Sensors and Smart Sensing: A Beginner's Guide
- Copyright
- Contents
- Author's biographies
- Preface
- Acknowledgments
- About the book
- Chapter 1: Introduction
- 1.1. Biomedical sensors and system overview
- 1.2. Physical characteristics
- 1.2.1. Magnetic sensing
- 1.2.2. Electrical sensing
- 1.2.3. Acoustic sensing
- 1.3. System and signal
- 1.3.1. Measurement
- 1.3.2. Biopotentials
- 1.4. Sensor characteristics
- 1.4.1. Sensitivity of the sensor
- 1.4.2. Linearity
- 1.4.3. Sensing errors
- 1.5. Biopotential signal monitoring and biosensors
- 1.6. Conclusion
- References
- Chapter 2: Sensing and data gathering methodology
- 2.1. Signals and noise of sensors
- 2.1.1. Various classes of noise
- 2.1.2. Sensing and measurement
- 2.1.3. Calibration and error scenarios
- 2.2. Flow sensing and measurement technique
- 2.3. Ultrasound-based blood flow sensing
- 2.4. Force-sensing measurement
- 2.5. Foot force measurement using smart shoe
- 2.6. ECG sensing and measurement
- 2.6.1. Electrocardiogram systems
- 2.6.2. Calibration and lead
- 2.6.3. Real-time IoT-based ECG sensing application
- 2.6.4. Heart disease prediction mechanism
- 2.7. EEG fundamentals
- 2.8. EEG signal analysis and classification
- 2.9. Ultrasound sensing for tissues and fetal growth observation
- 2.9.1. Obstetrical sonography
- 2.10. Conclusion
- References
- Chapter 3: Medical signal processing
- 3.1. Overview
- 3.2. Time series analysis
- 3.2.1. Signal overview
- 3.2.2. Some approaches
- 3.2.2.1. Moving average
- 3.2.2.2. Autoregressive moving average
- 3.2.2.3. ARIMA
- 3.3. Multiscale signal processing
- 3.3.1. Various signal processing models
- 3.4. Biomedical imaging and analysis
- 3.4.1. Magnetic resonance imaging
- 3.4.2. Computed tomography
- 3.4.3. Ultrasound-based diagnosis.
- 3.4.4. Abdominal imaging for computer-aided diagnosis
- 3.5. Image enhancement
- 3.6. Image classification technique
- 3.7. Wearable and implantable technologies
- 3.8. Conclusion
- References
- Chapter 4: Sensor data analysis
- 4.1. Machine learning preliminaries
- 4.2. Feature engineering
- 4.3. Perceptron learning
- 4.4. Application of machine learning on ECG data
- 4.4.1. ECG raw data classification
- 4.4.2. ECG image classification
- 4.4.3. ECG sound segmentation
- 4.5. Ambient medical data processing
- 4.5.1. Wearable healthcare
- 4.5.2. Wireless body area network
- 4.5.2.1. WBAN implementation for patient monitoring
- 4.6. Conclusion
- References
- Chapter 5: IoT and medical cyberphysical systems road map
- 5.1. Introduction
- 5.2. Ubiquitous sensing paradigm
- 5.2.1. Internet of medical things
- 5.2.2. Smart pill technology
- 5.3. IEEE 1918.1 tactile IoT
- 5.4. Functional architecture
- 5.5. Applications and services
- 5.5.1. Industrial automation
- 5.5.2. Robotics and motion planning
- 5.5.3. Healthcare applications
- 5.5.4. Augmented, virtual, and mixed reality applications
- 5.6. 5G and healthcare
- 5.7. Wi-fi and the femtocell
- 5.8. Software-defined networks
- 5.9. Slicing under SDN
- 5.10. Drone as a component of healthcare and MCPS
- 5.11. UAV-assisted COVID-19 monitoring
- 5.12. The use of sensors and IoT infrastructure to fight against COVID-19
- 5.12.1. Smart thermometer
- 5.12.2. Networks and cloud robots
- 5.12.3. Autonomous vehicles
- 5.13. Drone delivery in COVID-19 situation
- 5.14. COVID-19 prediction modeling
- 5.15. Conclusion
- References
- Chapter 6: Smart perishable food and medicine management overview
- 6.1. Introduction
- 6.2. Food and medical supply chain perspective
- 6.2.1. Food supply chain
- 6.2.2. Medicine supply chain management.
- 6.3. Internet of things concepts
- 6.4. Literature survey
- 6.5. The ecosystem of the IoT-based system
- 6.5.1. IoT solution for medicine
- 6.5.2. Hybrid vehicular DTN-based IoT methodology
- 6.5.3. DTN-based IoT approach
- 6.5.3.1. Direct contact method
- 6.5.3.2. Epidemic routing methods
- 6.5.3.3. Location-based routing mechanism
- 6.6. Analysis of different methodologies
- 6.6.1. Message delivery ratio comparison
- 6.6.2. Buffer usage comparison
- 6.6.3. Comparison of quality of services
- 6.7. Conclusion
- References
- Chapter 7: Overview of data gathering and cloud computing in healthcare
- 7.1. Introduction
- 7.2. Wireless sensor network
- 7.3. Transmission methods
- 7.3.1. Unicast
- 7.3.2. Multicast
- 7.3.3. Broadcast
- 7.3.4. Convergecast
- 7.4. Cloud computing
- 7.5. Medical cloud application
- 7.5.1. Information management and sharing
- 7.5.2. Medical support system
- 7.5.3. Clinical analytics
- 7.6. Issues in healthcare cloud
- 7.7. Conclusion
- References
- Index.