Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications Using MATLAB�
- Copyright Page
- Contents
- List of contributors
- About the editors
- Preface
- 1 Background to micro- and nanofluids
- References
- 2 Mathematical modeling of equations of couple stress fluid in respective coordinates
- 2.1 Basic flow equations
- 2.2 Equations of motion
- 2.3 Equations of motion by stress tensor
- 2.3.1 In the Cartesian coordinates system
- 2.3.2 In the cylindrical coordinates system
- 2.3.3 In the spherical coordinates system
- 2.4 Equations of motion by vector calculus
- 2.4.1 In the Cartesian coordinates system
- 2.4.2 In the cylindrical coordinates system
- 2.4.3 In the spherical coordinates system
- References
- 3 Mathematical model of steady incompressible nanofluid for heat transfer applications using MATLAB�
- 3.1 Introduction
- 3.2 Problem description
- 3.3 Method of solution
- 3.4 Algorithm and implementation of MATLAB�
- 3.5 Results and discussion
- 3.6 Conclusion
- References
- 4 Mathematical model for an incompressible unsteady nanofluid flow with heat transfer application
- 4.1 Introduction
- 4.2 Formulation of the problem
- 4.3 Results and discussion
- 4.4 Conclusion
- References
- 5 Mathematical model for incompressible unsteady nanofluid fluid flow with heat and mass transfer application
- Nomenclature
- 5.1 Introduction
- 5.2 Mathematical formulation
- 5.3 Results and discussion
- 5.4 Conclusions
- References
- 6 Stefan blowing effect on nanofluid flow over a stretching sheet in the presence of a magnetic dipole
- Nomenclature
- 6.1 Introduction
- 6.2 Mathematical formulation
- 6.2.1 Conditions and assumptions of the model
- 6.2.2 Geometry of fluid flow
- 6.2.3 Model equations
- 6.2.4 Nonuniform heat source/sink.
- 6.2.5 Magnetic dipole
- 6.3 The solution to the problem
- 6.3.1 Expression of parameters
- 6.3.2 Physical quantities of interest
- 6.4 Numerical method
- 6.4.1 Convergence and error tolerance
- 6.5 Results and discussion
- 6.5.1 Velocity and thermal profile
- 6.5.2 Concentration profile
- 6.5.3 Physical quantities of practical interest
- 6.6 Conclusions
- References
- 7 Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux
- Nomenclature
- 7.1 Introduction
- 7.2 Problem developments
- 7.3 Graphical outcomes and discussion
- 7.4 Conclusions
- References
- 8 Comparison of steady incompressible micropolar and nanofluid flow with heat and mass transfer applications
- 8.1 Introduction
- 8.2 Formulation
- 8.3 Entropy generation
- 8.4 Numerical procedure
- 8.5 Results and discussion
- 8.6 Concluding remarks
- References
- 9 Comparison of unsteady incompressible micropolar and nanofluid flow with heat transfer applications
- 9.1 Introduction
- 9.2 Formulation of the problem
- 9.3 Results and discussion
- 9.3.1 Velocity distribution
- 9.3.2 Angular momentum distribution
- 9.3.3 Temperature distribution
- 9.3.4 Nusselt distribution
- 9.4 Conclusion
- References
- 10 Implementation of boundary value problems in using MATLAB�
- 10.1 Introduction to MATLAB�
- 10.1.1 Plotting of curves and surfaces
- 10.2 Vector field and gradient
- 10.2.1 Aim
- 10.3 Limits and continuity
- 10.3.1 Aim
- 10.4 Definite integrals and their applications
- 10.4.1 Aim
- 10.5 Local maxima and local minima
- 10.5.1 Aim
- 10.6 Lagrange's multipliers method
- 10.6.1 Aim
- 10.7 Multiple integrals
- 10.7.1 Aim
- 10.7.2 Volume of a solid region
- 10.7.3 Change of variables: polar coordinates
- 10.8 Applications of derivatives
- 10.8.1 Aim
- 10.8.2 Maximum and minimum for a single variable.
- 10.9 Case study
- 10.9.1 Introduction
- 10.9.2 Methodology
- 10.9.3 MATLAB� implementation
- 10.9.4 Results and discussion
- 10.9.5 Conclusion
- 10.10 Navier-Stokes equation solving using an ODE solver
- 10.11 Solving the initial value problem
- 10.12 Solving two coupled nonlinear equations
- 10.13 Interpreting the results
- Further reading
- Appendix 1
- Index
- Back Cover.