Cargando…

Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Raju, Chakravarthula S. K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications Using MATLAB�
  • Copyright Page
  • Contents
  • List of contributors
  • About the editors
  • Preface
  • 1 Background to micro- and nanofluids
  • References
  • 2 Mathematical modeling of equations of couple stress fluid in respective coordinates
  • 2.1 Basic flow equations
  • 2.2 Equations of motion
  • 2.3 Equations of motion by stress tensor
  • 2.3.1 In the Cartesian coordinates system
  • 2.3.2 In the cylindrical coordinates system
  • 2.3.3 In the spherical coordinates system
  • 2.4 Equations of motion by vector calculus
  • 2.4.1 In the Cartesian coordinates system
  • 2.4.2 In the cylindrical coordinates system
  • 2.4.3 In the spherical coordinates system
  • References
  • 3 Mathematical model of steady incompressible nanofluid for heat transfer applications using MATLAB�
  • 3.1 Introduction
  • 3.2 Problem description
  • 3.3 Method of solution
  • 3.4 Algorithm and implementation of MATLAB�
  • 3.5 Results and discussion
  • 3.6 Conclusion
  • References
  • 4 Mathematical model for an incompressible unsteady nanofluid flow with heat transfer application
  • 4.1 Introduction
  • 4.2 Formulation of the problem
  • 4.3 Results and discussion
  • 4.4 Conclusion
  • References
  • 5 Mathematical model for incompressible unsteady nanofluid fluid flow with heat and mass transfer application
  • Nomenclature
  • 5.1 Introduction
  • 5.2 Mathematical formulation
  • 5.3 Results and discussion
  • 5.4 Conclusions
  • References
  • 6 Stefan blowing effect on nanofluid flow over a stretching sheet in the presence of a magnetic dipole
  • Nomenclature
  • 6.1 Introduction
  • 6.2 Mathematical formulation
  • 6.2.1 Conditions and assumptions of the model
  • 6.2.2 Geometry of fluid flow
  • 6.2.3 Model equations
  • 6.2.4 Nonuniform heat source/sink.
  • 6.2.5 Magnetic dipole
  • 6.3 The solution to the problem
  • 6.3.1 Expression of parameters
  • 6.3.2 Physical quantities of interest
  • 6.4 Numerical method
  • 6.4.1 Convergence and error tolerance
  • 6.5 Results and discussion
  • 6.5.1 Velocity and thermal profile
  • 6.5.2 Concentration profile
  • 6.5.3 Physical quantities of practical interest
  • 6.6 Conclusions
  • References
  • 7 Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux
  • Nomenclature
  • 7.1 Introduction
  • 7.2 Problem developments
  • 7.3 Graphical outcomes and discussion
  • 7.4 Conclusions
  • References
  • 8 Comparison of steady incompressible micropolar and nanofluid flow with heat and mass transfer applications
  • 8.1 Introduction
  • 8.2 Formulation
  • 8.3 Entropy generation
  • 8.4 Numerical procedure
  • 8.5 Results and discussion
  • 8.6 Concluding remarks
  • References
  • 9 Comparison of unsteady incompressible micropolar and nanofluid flow with heat transfer applications
  • 9.1 Introduction
  • 9.2 Formulation of the problem
  • 9.3 Results and discussion
  • 9.3.1 Velocity distribution
  • 9.3.2 Angular momentum distribution
  • 9.3.3 Temperature distribution
  • 9.3.4 Nusselt distribution
  • 9.4 Conclusion
  • References
  • 10 Implementation of boundary value problems in using MATLAB�
  • 10.1 Introduction to MATLAB�
  • 10.1.1 Plotting of curves and surfaces
  • 10.2 Vector field and gradient
  • 10.2.1 Aim
  • 10.3 Limits and continuity
  • 10.3.1 Aim
  • 10.4 Definite integrals and their applications
  • 10.4.1 Aim
  • 10.5 Local maxima and local minima
  • 10.5.1 Aim
  • 10.6 Lagrange's multipliers method
  • 10.6.1 Aim
  • 10.7 Multiple integrals
  • 10.7.1 Aim
  • 10.7.2 Volume of a solid region
  • 10.7.3 Change of variables: polar coordinates
  • 10.8 Applications of derivatives
  • 10.8.1 Aim
  • 10.8.2 Maximum and minimum for a single variable.
  • 10.9 Case study
  • 10.9.1 Introduction
  • 10.9.2 Methodology
  • 10.9.3 MATLAB� implementation
  • 10.9.4 Results and discussion
  • 10.9.5 Conclusion
  • 10.10 Navier-Stokes equation solving using an ODE solver
  • 10.11 Solving the initial value problem
  • 10.12 Solving two coupled nonlinear equations
  • 10.13 Interpreting the results
  • Further reading
  • Appendix 1
  • Index
  • Back Cover.