Cargando…

Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Raju, Chakravarthula S. K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_on1323453324
003 OCoLC
005 20231120010648.0
006 m o d
007 cr un|---aucuu
008 220605s2022 ne o 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d OCLCF  |d SFB  |d N$T  |d UKAHL  |d UKMGB  |d OCLCQ  |d OCLCO 
015 |a GBC2M9360  |2 bnb 
016 7 |a 020681207  |2 Uk 
020 |a 9780128231418  |q (electronic bk.) 
020 |a 0128231416  |q (electronic bk.) 
020 |z 9780128231401 
035 |a (OCoLC)1323453324 
050 4 |a TJ853.4.M53 
082 0 4 |a 620.1/06 
245 0 0 |a Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB  |h [electronic resource] /  |c edited by Chakravarthula S.K. Raju [and more]. 
260 |a Amsterdam :  |b Elsevier,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
500 |a Includes index. 
505 0 |a Front Cover -- Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications Using MATLAB� -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Background to micro- and nanofluids -- References -- 2 Mathematical modeling of equations of couple stress fluid in respective coordinates -- 2.1 Basic flow equations -- 2.2 Equations of motion -- 2.3 Equations of motion by stress tensor -- 2.3.1 In the Cartesian coordinates system -- 2.3.2 In the cylindrical coordinates system -- 2.3.3 In the spherical coordinates system -- 2.4 Equations of motion by vector calculus -- 2.4.1 In the Cartesian coordinates system -- 2.4.2 In the cylindrical coordinates system -- 2.4.3 In the spherical coordinates system -- References -- 3 Mathematical model of steady incompressible nanofluid for heat transfer applications using MATLAB� -- 3.1 Introduction -- 3.2 Problem description -- 3.3 Method of solution -- 3.4 Algorithm and implementation of MATLAB� -- 3.5 Results and discussion -- 3.6 Conclusion -- References -- 4 Mathematical model for an incompressible unsteady nanofluid flow with heat transfer application -- 4.1 Introduction -- 4.2 Formulation of the problem -- 4.3 Results and discussion -- 4.4 Conclusion -- References -- 5 Mathematical model for incompressible unsteady nanofluid fluid flow with heat and mass transfer application -- Nomenclature -- 5.1 Introduction -- 5.2 Mathematical formulation -- 5.3 Results and discussion -- 5.4 Conclusions -- References -- 6 Stefan blowing effect on nanofluid flow over a stretching sheet in the presence of a magnetic dipole -- Nomenclature -- 6.1 Introduction -- 6.2 Mathematical formulation -- 6.2.1 Conditions and assumptions of the model -- 6.2.2 Geometry of fluid flow -- 6.2.3 Model equations -- 6.2.4 Nonuniform heat source/sink. 
505 8 |a 6.2.5 Magnetic dipole -- 6.3 The solution to the problem -- 6.3.1 Expression of parameters -- 6.3.2 Physical quantities of interest -- 6.4 Numerical method -- 6.4.1 Convergence and error tolerance -- 6.5 Results and discussion -- 6.5.1 Velocity and thermal profile -- 6.5.2 Concentration profile -- 6.5.3 Physical quantities of practical interest -- 6.6 Conclusions -- References -- 7 Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux -- Nomenclature -- 7.1 Introduction -- 7.2 Problem developments -- 7.3 Graphical outcomes and discussion -- 7.4 Conclusions -- References -- 8 Comparison of steady incompressible micropolar and nanofluid flow with heat and mass transfer applications -- 8.1 Introduction -- 8.2 Formulation -- 8.3 Entropy generation -- 8.4 Numerical procedure -- 8.5 Results and discussion -- 8.6 Concluding remarks -- References -- 9 Comparison of unsteady incompressible micropolar and nanofluid flow with heat transfer applications -- 9.1 Introduction -- 9.2 Formulation of the problem -- 9.3 Results and discussion -- 9.3.1 Velocity distribution -- 9.3.2 Angular momentum distribution -- 9.3.3 Temperature distribution -- 9.3.4 Nusselt distribution -- 9.4 Conclusion -- References -- 10 Implementation of boundary value problems in using MATLAB� -- 10.1 Introduction to MATLAB� -- 10.1.1 Plotting of curves and surfaces -- 10.2 Vector field and gradient -- 10.2.1 Aim -- 10.3 Limits and continuity -- 10.3.1 Aim -- 10.4 Definite integrals and their applications -- 10.4.1 Aim -- 10.5 Local maxima and local minima -- 10.5.1 Aim -- 10.6 Lagrange's multipliers method -- 10.6.1 Aim -- 10.7 Multiple integrals -- 10.7.1 Aim -- 10.7.2 Volume of a solid region -- 10.7.3 Change of variables: polar coordinates -- 10.8 Applications of derivatives -- 10.8.1 Aim -- 10.8.2 Maximum and minimum for a single variable. 
505 8 |a 10.9 Case study -- 10.9.1 Introduction -- 10.9.2 Methodology -- 10.9.3 MATLAB� implementation -- 10.9.4 Results and discussion -- 10.9.5 Conclusion -- 10.10 Navier-Stokes equation solving using an ODE solver -- 10.11 Solving the initial value problem -- 10.12 Solving two coupled nonlinear equations -- 10.13 Interpreting the results -- Further reading -- Appendix 1 -- Index -- Back Cover. 
650 0 |a Nanofluids. 
650 0 |a Mass transfer. 
630 0 0 |a MATLAB. 
650 6 |a Nanofluides.  |0 (CaQQLa)000259674 
650 6 |a Transfert de masse.  |0 (CaQQLa)201-0000086 
630 0 7 |a MATLAB  |2 fast  |0 (OCoLC)fst01365096 
650 7 |a Mass transfer  |2 fast  |0 (OCoLC)fst01011450 
650 7 |a Nanofluids  |2 fast  |0 (OCoLC)fst01742507 
700 1 |a Raju, Chakravarthula S. K. 
776 0 8 |i Print version:  |z 0128231408  |z 9780128231401  |w (OCoLC)1286791962 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128231401  |z Texto completo