|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_on1323453324 |
003 |
OCoLC |
005 |
20231120010648.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
220605s2022 ne o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d OCLCF
|d SFB
|d N$T
|d UKAHL
|d UKMGB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC2M9360
|2 bnb
|
016 |
7 |
|
|a 020681207
|2 Uk
|
020 |
|
|
|a 9780128231418
|q (electronic bk.)
|
020 |
|
|
|a 0128231416
|q (electronic bk.)
|
020 |
|
|
|z 9780128231401
|
035 |
|
|
|a (OCoLC)1323453324
|
050 |
|
4 |
|a TJ853.4.M53
|
082 |
0 |
4 |
|a 620.1/06
|
245 |
0 |
0 |
|a Micro and nanofluid convection with magnetic field effects for heat and mass transfer applications using MATLAB
|h [electronic resource] /
|c edited by Chakravarthula S.K. Raju [and more].
|
260 |
|
|
|a Amsterdam :
|b Elsevier,
|c 2022.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Front Cover -- Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications Using MATLAB� -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Background to micro- and nanofluids -- References -- 2 Mathematical modeling of equations of couple stress fluid in respective coordinates -- 2.1 Basic flow equations -- 2.2 Equations of motion -- 2.3 Equations of motion by stress tensor -- 2.3.1 In the Cartesian coordinates system -- 2.3.2 In the cylindrical coordinates system -- 2.3.3 In the spherical coordinates system -- 2.4 Equations of motion by vector calculus -- 2.4.1 In the Cartesian coordinates system -- 2.4.2 In the cylindrical coordinates system -- 2.4.3 In the spherical coordinates system -- References -- 3 Mathematical model of steady incompressible nanofluid for heat transfer applications using MATLAB� -- 3.1 Introduction -- 3.2 Problem description -- 3.3 Method of solution -- 3.4 Algorithm and implementation of MATLAB� -- 3.5 Results and discussion -- 3.6 Conclusion -- References -- 4 Mathematical model for an incompressible unsteady nanofluid flow with heat transfer application -- 4.1 Introduction -- 4.2 Formulation of the problem -- 4.3 Results and discussion -- 4.4 Conclusion -- References -- 5 Mathematical model for incompressible unsteady nanofluid fluid flow with heat and mass transfer application -- Nomenclature -- 5.1 Introduction -- 5.2 Mathematical formulation -- 5.3 Results and discussion -- 5.4 Conclusions -- References -- 6 Stefan blowing effect on nanofluid flow over a stretching sheet in the presence of a magnetic dipole -- Nomenclature -- 6.1 Introduction -- 6.2 Mathematical formulation -- 6.2.1 Conditions and assumptions of the model -- 6.2.2 Geometry of fluid flow -- 6.2.3 Model equations -- 6.2.4 Nonuniform heat source/sink.
|
505 |
8 |
|
|a 6.2.5 Magnetic dipole -- 6.3 The solution to the problem -- 6.3.1 Expression of parameters -- 6.3.2 Physical quantities of interest -- 6.4 Numerical method -- 6.4.1 Convergence and error tolerance -- 6.5 Results and discussion -- 6.5.1 Velocity and thermal profile -- 6.5.2 Concentration profile -- 6.5.3 Physical quantities of practical interest -- 6.6 Conclusions -- References -- 7 Nonlinear unsteady convection on micro and nanofluids with Cattaneo-Christov heat flux -- Nomenclature -- 7.1 Introduction -- 7.2 Problem developments -- 7.3 Graphical outcomes and discussion -- 7.4 Conclusions -- References -- 8 Comparison of steady incompressible micropolar and nanofluid flow with heat and mass transfer applications -- 8.1 Introduction -- 8.2 Formulation -- 8.3 Entropy generation -- 8.4 Numerical procedure -- 8.5 Results and discussion -- 8.6 Concluding remarks -- References -- 9 Comparison of unsteady incompressible micropolar and nanofluid flow with heat transfer applications -- 9.1 Introduction -- 9.2 Formulation of the problem -- 9.3 Results and discussion -- 9.3.1 Velocity distribution -- 9.3.2 Angular momentum distribution -- 9.3.3 Temperature distribution -- 9.3.4 Nusselt distribution -- 9.4 Conclusion -- References -- 10 Implementation of boundary value problems in using MATLAB� -- 10.1 Introduction to MATLAB� -- 10.1.1 Plotting of curves and surfaces -- 10.2 Vector field and gradient -- 10.2.1 Aim -- 10.3 Limits and continuity -- 10.3.1 Aim -- 10.4 Definite integrals and their applications -- 10.4.1 Aim -- 10.5 Local maxima and local minima -- 10.5.1 Aim -- 10.6 Lagrange's multipliers method -- 10.6.1 Aim -- 10.7 Multiple integrals -- 10.7.1 Aim -- 10.7.2 Volume of a solid region -- 10.7.3 Change of variables: polar coordinates -- 10.8 Applications of derivatives -- 10.8.1 Aim -- 10.8.2 Maximum and minimum for a single variable.
|
505 |
8 |
|
|a 10.9 Case study -- 10.9.1 Introduction -- 10.9.2 Methodology -- 10.9.3 MATLAB� implementation -- 10.9.4 Results and discussion -- 10.9.5 Conclusion -- 10.10 Navier-Stokes equation solving using an ODE solver -- 10.11 Solving the initial value problem -- 10.12 Solving two coupled nonlinear equations -- 10.13 Interpreting the results -- Further reading -- Appendix 1 -- Index -- Back Cover.
|
650 |
|
0 |
|a Nanofluids.
|
650 |
|
0 |
|a Mass transfer.
|
630 |
0 |
0 |
|a MATLAB.
|
650 |
|
6 |
|a Nanofluides.
|0 (CaQQLa)000259674
|
650 |
|
6 |
|a Transfert de masse.
|0 (CaQQLa)201-0000086
|
630 |
0 |
7 |
|a MATLAB
|2 fast
|0 (OCoLC)fst01365096
|
650 |
|
7 |
|a Mass transfer
|2 fast
|0 (OCoLC)fst01011450
|
650 |
|
7 |
|a Nanofluids
|2 fast
|0 (OCoLC)fst01742507
|
700 |
1 |
|
|a Raju, Chakravarthula S. K.
|
776 |
0 |
8 |
|i Print version:
|z 0128231408
|z 9780128231401
|w (OCoLC)1286791962
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128231401
|z Texto completo
|