Cargando…

Development in wastewater treatment research and processes : microbial ecology, diversity and functions of ammonia oxidizing bacteria /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shah, Maulin P. (Editor ), Rodriguez-Couto, Susana (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Development in Wastewater Treatment Research and Processes: Microbial Ecology, Diversity, and Functions of Ammonia-Oxidizi ...
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Anammox process: An innovative approach and a promising technology
  • 1.1. Introduction
  • 1.2. Mechanism of anammox process
  • 1.3. Role of microorganisms in anammox
  • 1.4. Role of various parameters on anammox
  • 1.4.1. Ammonium
  • 1.4.2. Nitrite
  • 1.4.3. Organic matter
  • 1.5. The limitations and solutions of the anammox system
  • 1.6. Conclusion
  • Conflict of interest
  • References
  • Chapter 2: Abundance of ammonia-oxidizing bacteria and archaea in industrial wastewater treatment systems
  • 2.1. Introduction
  • 2.2. Key enzymes involved
  • 2.3. Physiology and cellular structure
  • 2.3.1. Physiology of AOA
  • 2.3.1.1. Kinetics stoichiometry of ammonia oxidation
  • 2.3.2. Physiology of AOB
  • 2.4. Diversity in WWTPs
  • 2.4.1. Diversity of AOA
  • 2.4.2. Diversity of AOB
  • 2.5. Mechanism of action of AOA and AOB
  • 2.5.1. Mechanism of AOA
  • 2.5.2. Mechanism of AOB
  • 2.6. Competition and symbiotic relationships between AOMs
  • 2.7. AOA at low DO or in special WWTPs
  • 2.8. Factors influencing AOB abundance and diversity
  • 2.8.1. Ammonia levels
  • 2.8.2. FNA and nitrite
  • 2.8.3. Process conditions and regime
  • 2.9. Quantification techniques
  • 2.9.1. DNA extraction
  • 2.9.2. Quantitative PCR and reverse transcriptional qPCR
  • 2.9.3. High throughput sequencing
  • 2.9.4. Phylogenetic analysis
  • 2.10. Environmental factors affecting AOA and AOB
  • 2.10.1. Ammonia concentration
  • 2.10.2. Temperature
  • 2.10.3. Oxygen and aeration pressure
  • 2.10.4. Organic loading
  • 2.10.5. Salinity
  • 2.10.6. DO
  • 2.10.7. Sulfide
  • 2.11. Future perspectives
  • 2.12. Conclusion
  • References
  • Chapter 3: Autotrophic nitrification in bacteria
  • 3.1. Introduction.
  • 3.2. Symbiotic nitrogen fixers
  • 3.2.1. Molecular mechanism of endosymbionts
  • 3.2.2. Molecular mechanism of nodule formation
  • 3.2.3. Mechanism of exchange of nutrients and nitrogen
  • 3.3. Events of nitrogen fixation
  • 3.3.1. Nitrification
  • 3.3.2. Nitrate and nitrite synthesis during nitrification
  • 3.3.3. Hydroxylamine oxidoreductase
  • 3.3.4. Nitrous oxide production during nitrification
  • 3.4. Genetic regulation of nitrogen fixation
  • 3.5. Understanding the balance between Photosynthesis and nitrogen fixation
  • 3.5.1. Nitrogen fixation by cyanobacteria
  • 3.5.2. Nitrogen fixation by rhizobia
  • 3.5.2.1. Nitrogenase and its mode of action
  • 3.5.3. Role of abiotic factors in BNF
  • 3.6. Conclusion and future aspect
  • References
  • Chapter 4: Omics: A revolutionary tool to study ammonia-oxidizing bacteria and their application in bioremediation
  • 4.1. Introduction
  • 4.2. Chemolitho-autotrophic ammonia oxidation
  • 4.3. Role of ammonia-oxidizing bacteria in nitrogen cycling
  • 4.4. Commercial significance and application of ammonia-oxidizing bacteria
  • 4.5. Difficulties associated with nitrification and ammonia-oxidizing bacteria
  • 4.6. Isolation of ammonia-oxidizing bacteria from the environment
  • 4.7. Cultivation of new ammonia oxidizers
  • 4.8. Genomics and metabolic models
  • 4.9. Terminology of environmental proteomics
  • 4.10. Microbial culture proteomic studies techniques
  • 4.11. Potential applications of environmental proteomics
  • 4.12. Enzymology of ammonia-oxidation
  • 4.13. Ammonia-oxidizers in the environment and production of N2O
  • 4.14. Remediation of recalcitrant pollutants
  • 4.15. Conclusion
  • References
  • Chapter 5: Diversity of ammonia-oxidizing bacteria
  • 5.1. Introduction
  • 5.2. Emission of nitrous oxide
  • 5.2.1. Potential sources
  • 5.2.2. Yield
  • 5.3. Niche differentiation
  • 5.3.1. Oligotrophy.
  • 5.3.2. pH
  • 5.4. Conclusion
  • References
  • Chapter 6: Aerobic and anaerobic ammonia oxidizing bacteria
  • 6.1. Introduction
  • 6.2. Ammonia-oxidizing bacteria
  • 6.2.1. Ecology
  • 6.2.2. Environmental regulators of ammonia oxidation
  • 6.2.3. Strategic functional, anatomical, and biological differentiations among ammonia oxidizers
  • 6.3. Anaerobic ammonium oxidation bacteria
  • 6.3.1. Ecology
  • 6.3.1.1. Geographical distribution
  • 6.3.1.2. Geochemical importance and important environmental constituents
  • 6.3.2. Physiology of anammox bacteria
  • 6.4. Microbial interactions and their contribution to enhanced nitrogen removal
  • 6.5. Conclusion
  • References
  • Chapter 7: Recent advances in biological nitrogen removal from wastewater: Special focus on reactor configuration and nan ...
  • 7.1. Introduction
  • 7.2. Chemolithotrophs and their diversity
  • 7.2.1. Obligate chemolithotroph bacteria
  • 7.2.2. Facultative chemolithotroph bacteria
  • 7.2.3. Sulfur-oxidizing bacteria
  • 7.2.4. Ammonium-oxidizing bacteria
  • 7.2.5. Nitrite-oxidizing bacteria
  • 7.2.6. Methane-oxidizing bacteria or methanotrophs
  • 7.2.7. Ferrous-oxidizing bacteria
  • 7.2.8. Hydrogen-oxidizing bacteria
  • 7.3. BNR technologies for wastewater treatment
  • 7.3.1. Nitrification/denitrification
  • 7.3.2. Nitritation/denitritation
  • 7.3.3. Sidestream partial nitritation/anammox
  • 7.3.4. Mainstream partial nitritation/anammox
  • 7.3.5. Nitrogen recovery
  • 7.3.6. Phototrophic systems
  • 7.3.7. Microbial electrochemical cells
  • 7.4. Advances in the nitrification process
  • 7.4.1. Sequencing batch reactor
  • 7.4.2. Activated sludge models
  • 7.5. Effect of nanomaterials on microbial nitro-transformation
  • 7.6. Conclusion and future perspective
  • References
  • Chapter 8: Diversity of nitrogen-removing microorganisms
  • 8.1. Introduction.
  • 8.2. Nitrogen removal by microorganisms that use sulfur compounds as electron donor
  • 8.2.1. Autotrophic denitrifying sulfur-oxidizing bacteria
  • 8.2.2. Growth conditions of ADSOB
  • 8.2.3. Metabolic pathways involved in sulfur compound oxidation
  • 8.2.4. Molecular tools for assessing microbial diversity in SDAD processes
  • 8.2.5. Technologies used to carry out the SDAD process to treat wastewaters
  • 8.2.6. Relevant operating conditions in the SDAD process to treat wastewaters
  • 8.2.7. Projections of using the SDAD process to remove nitrogen in wastewaters
  • 8.3. Nitrogen removal by microorganisms that use hydrogen as electron donor: Hydrogenotrophic denitrification
  • 8.3.1. Nitrate removal pathway and hydrogen as electron donor
  • 8.3.2. Microorganisms and microbial community involved in the process
  • 8.3.3. Basis of operational conditions
  • 8.3.4. Possibilities and available technologies for large-scale application
  • 8.4. Nitrogen removal by anaerobic nitrate-dependent methanotrophic microorganisms
  • 8.4.1. Nitrogen removal pathways and ecosystem distribution of the different types of microorganisms
  • 8.4.2. Activity and factors affecting the enrichment of these microorganisms
  • 8.4.3. Molecular tools for assessing microbial diversity
  • 8.4.4. Application possibilities in sewage and industrial wastewater treatment plants-Main operating conditions description
  • Acknowledgments
  • References
  • Chapter 9: An overview of the anammox process
  • 9.1. Introduction
  • 9.2. The evolution of anammox reaction stoichiometry
  • 9.3. The existing problems and countermeasures for anammox process application
  • 9.3.1. The rapid start-up and recovery of anammox-based process
  • 9.3.2. The retention of anammox sludge in the reactor
  • 9.3.3. The further improvement of NRE
  • 9.4. The status of several main anammox-related processes.
  • 9.4.1. Nitritation process
  • 9.4.2. Pure anammox process
  • 9.4.3. PNA process
  • 9.4.3.1. One-stage PNA and two-stage PNA
  • 9.4.3.2. The comparison of the one-stage and two-stage PNA process
  • 9.4.4. Simultaneous nitrogen removal and phosphorus recovery process
  • 9.4.5. Denitratation/anammox process
  • 9.4.6. DAMO/anammox process
  • 9.5. Conclusion
  • References
  • Chapter 10: Aerobic and anaerobic ammonia-oxidizing bacteria: A resilient challenger or innate collaborator
  • 10.1. Introduction
  • 10.2. Physiology and ecology of ammonia-oxidizing bacteria
  • 10.2.1. Ecology of ammonia-oxidizing bacteria
  • 10.2.2. Physiology of ammonia-oxidizing bacteria
  • 10.2.3. Biodiversity of aerobic and anaerobic oxidizing bacteria
  • 10.2.4. Species diversity
  • 10.3. Factors affecting aerobic and anaerobic oxidizing bacteria
  • 10.3.1. Ammonia levels
  • 10.3.2. Organic carbon
  • 10.3.3. Temperature
  • 10.3.4. Salinity
  • 10.3.5. DO levels
  • 10.3.6. pH
  • 10.3.7. Sulfide levels
  • 10.3.8. Phosphate
  • 10.4. Role of aerobic and anaerobic ammonia-oxidizing bacteria in wastewater treatment plants
  • 10.5. Application of anammox in wastewater treatment
  • 10.5.1. Advantages
  • 10.5.2. Disadvantages
  • 10.6. Ammonia-oxidizing microorganisms: Key players in the promotion of plant growth
  • 10.6.1. Autotrophic nitrification
  • 10.6.2. Heterotrophic nitrification
  • 10.6.3. Diversity of ammonia oxidizers
  • 10.7. Mechanism of ammonia oxidation by ammonia-oxidizing microorganisms
  • 10.8. Function and activity of ammonia-oxidizing microbes in different soil types
  • 10.8.1. pH
  • 10.8.2. Bioavailability of nutrients
  • 10.8.3. Temperature
  • 10.8.4. Soil water content
  • 10.9. Conclusion
  • References
  • Chapter 11: A technique to boost the nitrogen-rich agricultural ecosystems efficiency by anaerobic ammonium oxidation (an ...
  • 11.1. Introduction.