|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1322062918 |
003 |
OCoLC |
005 |
20231120010647.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
220531t20222022ne a ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d UKMGB
|d OCLCF
|d SFB
|d N$T
|d UKAHL
|d OCLCQ
|d TFW
|d OCLCO
|
015 |
|
|
|a GBC241381
|2 bnb
|
016 |
7 |
|
|a 020511631
|2 Uk
|
020 |
|
|
|a 032398505X
|
020 |
|
|
|a 9780323985055
|q (electronic bk.)
|
020 |
|
|
|z 9780323919012
|
020 |
|
|
|z 0323919014
|
035 |
|
|
|a (OCoLC)1322062918
|
050 |
|
4 |
|a TD755
|
082 |
0 |
4 |
|a 628.3
|2 23
|
245 |
0 |
0 |
|a Development in wastewater treatment research and processes :
|b microbial ecology, diversity and functions of ammonia oxidizing bacteria /
|c edited by Maulin P. Shah, Susana Rodriguez-Couto.
|
264 |
|
1 |
|a Amsterdam, Netherlands ;
|a Kidlington, Oxford, United Kingdom ;
|a Cambridge, MA, United States :
|b Elsevier,
|c [2022]
|
264 |
|
4 |
|c �2022
|
300 |
|
|
|a 1 online resource :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Intro -- Development in Wastewater Treatment Research and Processes: Microbial Ecology, Diversity, and Functions of Ammonia-Oxidizi ... -- Copyright -- Contents -- Contributors -- Chapter 1: Anammox process: An innovative approach and a promising technology -- 1.1. Introduction -- 1.2. Mechanism of anammox process -- 1.3. Role of microorganisms in anammox -- 1.4. Role of various parameters on anammox -- 1.4.1. Ammonium -- 1.4.2. Nitrite -- 1.4.3. Organic matter -- 1.5. The limitations and solutions of the anammox system -- 1.6. Conclusion -- Conflict of interest -- References -- Chapter 2: Abundance of ammonia-oxidizing bacteria and archaea in industrial wastewater treatment systems -- 2.1. Introduction -- 2.2. Key enzymes involved -- 2.3. Physiology and cellular structure -- 2.3.1. Physiology of AOA -- 2.3.1.1. Kinetics stoichiometry of ammonia oxidation -- 2.3.2. Physiology of AOB -- 2.4. Diversity in WWTPs -- 2.4.1. Diversity of AOA -- 2.4.2. Diversity of AOB -- 2.5. Mechanism of action of AOA and AOB -- 2.5.1. Mechanism of AOA -- 2.5.2. Mechanism of AOB -- 2.6. Competition and symbiotic relationships between AOMs -- 2.7. AOA at low DO or in special WWTPs -- 2.8. Factors influencing AOB abundance and diversity -- 2.8.1. Ammonia levels -- 2.8.2. FNA and nitrite -- 2.8.3. Process conditions and regime -- 2.9. Quantification techniques -- 2.9.1. DNA extraction -- 2.9.2. Quantitative PCR and reverse transcriptional qPCR -- 2.9.3. High throughput sequencing -- 2.9.4. Phylogenetic analysis -- 2.10. Environmental factors affecting AOA and AOB -- 2.10.1. Ammonia concentration -- 2.10.2. Temperature -- 2.10.3. Oxygen and aeration pressure -- 2.10.4. Organic loading -- 2.10.5. Salinity -- 2.10.6. DO -- 2.10.7. Sulfide -- 2.11. Future perspectives -- 2.12. Conclusion -- References -- Chapter 3: Autotrophic nitrification in bacteria -- 3.1. Introduction.
|
505 |
8 |
|
|a 3.2. Symbiotic nitrogen fixers -- 3.2.1. Molecular mechanism of endosymbionts -- 3.2.2. Molecular mechanism of nodule formation -- 3.2.3. Mechanism of exchange of nutrients and nitrogen -- 3.3. Events of nitrogen fixation -- 3.3.1. Nitrification -- 3.3.2. Nitrate and nitrite synthesis during nitrification -- 3.3.3. Hydroxylamine oxidoreductase -- 3.3.4. Nitrous oxide production during nitrification -- 3.4. Genetic regulation of nitrogen fixation -- 3.5. Understanding the balance between Photosynthesis and nitrogen fixation -- 3.5.1. Nitrogen fixation by cyanobacteria -- 3.5.2. Nitrogen fixation by rhizobia -- 3.5.2.1. Nitrogenase and its mode of action -- 3.5.3. Role of abiotic factors in BNF -- 3.6. Conclusion and future aspect -- References -- Chapter 4: Omics: A revolutionary tool to study ammonia-oxidizing bacteria and their application in bioremediation -- 4.1. Introduction -- 4.2. Chemolitho-autotrophic ammonia oxidation -- 4.3. Role of ammonia-oxidizing bacteria in nitrogen cycling -- 4.4. Commercial significance and application of ammonia-oxidizing bacteria -- 4.5. Difficulties associated with nitrification and ammonia-oxidizing bacteria -- 4.6. Isolation of ammonia-oxidizing bacteria from the environment -- 4.7. Cultivation of new ammonia oxidizers -- 4.8. Genomics and metabolic models -- 4.9. Terminology of environmental proteomics -- 4.10. Microbial culture proteomic studies techniques -- 4.11. Potential applications of environmental proteomics -- 4.12. Enzymology of ammonia-oxidation -- 4.13. Ammonia-oxidizers in the environment and production of N2O -- 4.14. Remediation of recalcitrant pollutants -- 4.15. Conclusion -- References -- Chapter 5: Diversity of ammonia-oxidizing bacteria -- 5.1. Introduction -- 5.2. Emission of nitrous oxide -- 5.2.1. Potential sources -- 5.2.2. Yield -- 5.3. Niche differentiation -- 5.3.1. Oligotrophy.
|
505 |
8 |
|
|a 5.3.2. pH -- 5.4. Conclusion -- References -- Chapter 6: Aerobic and anaerobic ammonia oxidizing bacteria -- 6.1. Introduction -- 6.2. Ammonia-oxidizing bacteria -- 6.2.1. Ecology -- 6.2.2. Environmental regulators of ammonia oxidation -- 6.2.3. Strategic functional, anatomical, and biological differentiations among ammonia oxidizers -- 6.3. Anaerobic ammonium oxidation bacteria -- 6.3.1. Ecology -- 6.3.1.1. Geographical distribution -- 6.3.1.2. Geochemical importance and important environmental constituents -- 6.3.2. Physiology of anammox bacteria -- 6.4. Microbial interactions and their contribution to enhanced nitrogen removal -- 6.5. Conclusion -- References -- Chapter 7: Recent advances in biological nitrogen removal from wastewater: Special focus on reactor configuration and nan ... -- 7.1. Introduction -- 7.2. Chemolithotrophs and their diversity -- 7.2.1. Obligate chemolithotroph bacteria -- 7.2.2. Facultative chemolithotroph bacteria -- 7.2.3. Sulfur-oxidizing bacteria -- 7.2.4. Ammonium-oxidizing bacteria -- 7.2.5. Nitrite-oxidizing bacteria -- 7.2.6. Methane-oxidizing bacteria or methanotrophs -- 7.2.7. Ferrous-oxidizing bacteria -- 7.2.8. Hydrogen-oxidizing bacteria -- 7.3. BNR technologies for wastewater treatment -- 7.3.1. Nitrification/denitrification -- 7.3.2. Nitritation/denitritation -- 7.3.3. Sidestream partial nitritation/anammox -- 7.3.4. Mainstream partial nitritation/anammox -- 7.3.5. Nitrogen recovery -- 7.3.6. Phototrophic systems -- 7.3.7. Microbial electrochemical cells -- 7.4. Advances in the nitrification process -- 7.4.1. Sequencing batch reactor -- 7.4.2. Activated sludge models -- 7.5. Effect of nanomaterials on microbial nitro-transformation -- 7.6. Conclusion and future perspective -- References -- Chapter 8: Diversity of nitrogen-removing microorganisms -- 8.1. Introduction.
|
505 |
8 |
|
|a 8.2. Nitrogen removal by microorganisms that use sulfur compounds as electron donor -- 8.2.1. Autotrophic denitrifying sulfur-oxidizing bacteria -- 8.2.2. Growth conditions of ADSOB -- 8.2.3. Metabolic pathways involved in sulfur compound oxidation -- 8.2.4. Molecular tools for assessing microbial diversity in SDAD processes -- 8.2.5. Technologies used to carry out the SDAD process to treat wastewaters -- 8.2.6. Relevant operating conditions in the SDAD process to treat wastewaters -- 8.2.7. Projections of using the SDAD process to remove nitrogen in wastewaters -- 8.3. Nitrogen removal by microorganisms that use hydrogen as electron donor: Hydrogenotrophic denitrification -- 8.3.1. Nitrate removal pathway and hydrogen as electron donor -- 8.3.2. Microorganisms and microbial community involved in the process -- 8.3.3. Basis of operational conditions -- 8.3.4. Possibilities and available technologies for large-scale application -- 8.4. Nitrogen removal by anaerobic nitrate-dependent methanotrophic microorganisms -- 8.4.1. Nitrogen removal pathways and ecosystem distribution of the different types of microorganisms -- 8.4.2. Activity and factors affecting the enrichment of these microorganisms -- 8.4.3. Molecular tools for assessing microbial diversity -- 8.4.4. Application possibilities in sewage and industrial wastewater treatment plants-Main operating conditions description -- Acknowledgments -- References -- Chapter 9: An overview of the anammox process -- 9.1. Introduction -- 9.2. The evolution of anammox reaction stoichiometry -- 9.3. The existing problems and countermeasures for anammox process application -- 9.3.1. The rapid start-up and recovery of anammox-based process -- 9.3.2. The retention of anammox sludge in the reactor -- 9.3.3. The further improvement of NRE -- 9.4. The status of several main anammox-related processes.
|
505 |
8 |
|
|a 9.4.1. Nitritation process -- 9.4.2. Pure anammox process -- 9.4.3. PNA process -- 9.4.3.1. One-stage PNA and two-stage PNA -- 9.4.3.2. The comparison of the one-stage and two-stage PNA process -- 9.4.4. Simultaneous nitrogen removal and phosphorus recovery process -- 9.4.5. Denitratation/anammox process -- 9.4.6. DAMO/anammox process -- 9.5. Conclusion -- References -- Chapter 10: Aerobic and anaerobic ammonia-oxidizing bacteria: A resilient challenger or innate collaborator -- 10.1. Introduction -- 10.2. Physiology and ecology of ammonia-oxidizing bacteria -- 10.2.1. Ecology of ammonia-oxidizing bacteria -- 10.2.2. Physiology of ammonia-oxidizing bacteria -- 10.2.3. Biodiversity of aerobic and anaerobic oxidizing bacteria -- 10.2.4. Species diversity -- 10.3. Factors affecting aerobic and anaerobic oxidizing bacteria -- 10.3.1. Ammonia levels -- 10.3.2. Organic carbon -- 10.3.3. Temperature -- 10.3.4. Salinity -- 10.3.5. DO levels -- 10.3.6. pH -- 10.3.7. Sulfide levels -- 10.3.8. Phosphate -- 10.4. Role of aerobic and anaerobic ammonia-oxidizing bacteria in wastewater treatment plants -- 10.5. Application of anammox in wastewater treatment -- 10.5.1. Advantages -- 10.5.2. Disadvantages -- 10.6. Ammonia-oxidizing microorganisms: Key players in the promotion of plant growth -- 10.6.1. Autotrophic nitrification -- 10.6.2. Heterotrophic nitrification -- 10.6.3. Diversity of ammonia oxidizers -- 10.7. Mechanism of ammonia oxidation by ammonia-oxidizing microorganisms -- 10.8. Function and activity of ammonia-oxidizing microbes in different soil types -- 10.8.1. pH -- 10.8.2. Bioavailability of nutrients -- 10.8.3. Temperature -- 10.8.4. Soil water content -- 10.9. Conclusion -- References -- Chapter 11: A technique to boost the nitrogen-rich agricultural ecosystems efficiency by anaerobic ammonium oxidation (an ... -- 11.1. Introduction.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect platform, viewed June 5, 2023).
|
650 |
|
0 |
|a Sewage
|x Purification
|x Biological treatment.
|
650 |
|
6 |
|a Eaux us�ees
|x �Epuration
|x Traitement biologique.
|0 (CaQQLa)201-0004578
|
650 |
|
7 |
|a Sewage
|x Purification
|x Biological treatment
|2 fast
|0 (OCoLC)fst01113768
|
700 |
1 |
|
|a Shah, Maulin P.,
|e editor.
|
700 |
1 |
|
|a Rodriguez-Couto, Susana,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Development in wastewater treatment research and processes.
|d Amsterdam : Elsevier, 2022
|z 9780323919012
|w (OCoLC)1308448157
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323919012
|z Texto completo
|