Cargando…

Microbial consortium and biotransformation for pollution decontamination /

Microbial Consortium and Biotransformation for Pollution Decontamination presents techniques for the decontamination of polluted environs through potential microbes, particularly examining the benefits of its broad applicability, sustainability and eco-friendly nature. Utilizing global case studies...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dar, Gowhar Hamid (Editor ), Bhat, Rouf Ahmad, 1981- (Editor ), Qadri, Humaira (Editor ), Hakeem, Khalid Rehman (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Colección:Advances in pollution research.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Microbial Consortium and Biotransformation for Pollution Decontamination
  • Copyright Page
  • Dedication
  • Contents
  • List of contributors
  • About the editors
  • Foreword
  • Preface
  • Acknowledgments
  • About the book
  • 1 Threats and consequences of untreated wastewater on freshwater environments
  • 1.1 Introduction
  • 1.2 What is sewage?
  • 1.3 Contaminant sources of emerging concerns
  • 1.3.1 Wastewater
  • 1.3.2 Sewage sludge
  • 1.3.3 Urban solid waste
  • 1.4 Fate of contaminants
  • 1.5 Ecological risk and health assessment of emerging contaminant in untreated water
  • 1.6 Untreated wastewater as a cause of antibiotic resistance
  • 1.7 Impact of wastewater on cities
  • 1.8 Impact of wastewater on industry
  • 1.9 Impact of wastewater on agriculture
  • 1.10 Impact of wastewater on natural bodies of water
  • 1.11 Impact of untreated wastewater on microbial diversity
  • 1.12 Impact of wastewater in aquatic environments
  • 1.13 Biologic hazards in aquatic environments
  • 1.14 Major threats
  • 1.15 Why should wastewater be treated?
  • 1.16 Challenges and opportunities
  • 1.17 Conclusion
  • References
  • 2 Unraveling a correlation between environmental contaminants and human health
  • 2.1 Introduction
  • 2.2 Environmental toxicology and related human health risks
  • 2.2.1 Air pollution
  • 2.2.2 Hazard effect on health
  • 2.2.3 Nonpoint source pollution
  • 2.2.4 Chemical pollution from the environment
  • 2.3 The environmental impact of chemical fertilizers and excessive fertilizers on water quality
  • 2.3.1 Oxygen consumption
  • 2.3.2 Weed growth and algae bloom
  • 2.4 Method to reveal the relationship between human body, environment, and emotion data
  • 2.5 Conclusion
  • References
  • 3 Effect of wastewater from industries on freshwater ecosystem: threats and remedies
  • 3.1 Introduction.
  • 3.2 Saline wastewater: its impact and treatment
  • 3.2.1 Effect of salinity on freshwater ecosystem
  • 3.3 Food-processing industry wastewater
  • 3.4 Leather industry wastewater
  • 3.5 Effluents from petroleum industry
  • 3.6 Plastic industries and micro- and nanoplastic in freshwater ecosystem
  • 3.6.1 Effect of microplastic on freshwater ecosystem
  • 3.7 Effect of different wastewater from industries on freshwater organisms
  • 3.8 Remedies to reduce industrial effluents
  • 3.9 Conclusion
  • References
  • 4 Credibility on biosensors for monitoring contamination in aquatic environs
  • 4.1 Introduction
  • 4.2 Major sources of water pollution
  • 4.3 Biosensors
  • 4.3.1 Biosensors for the detection of heavy metals
  • 4.3.1.1 Enzyme-based biosensors
  • 4.3.1.2 Protein-based biosensor
  • 4.3.1.3 Antibody-based biosensor
  • 4.3.1.4 Deoxyribonucleic acid-based biosensor
  • 4.3.1.5 Naturally occurring whole-cell biosensor
  • 4.3.1.6 Genetic engineering-based biosensor
  • 4.3.2 Biosensors for the detection of microorganisms
  • 4.3.2.1 Optical biosensors
  • 4.3.2.2 Electrochemical biosensor
  • 4.3.3 Biosensors for the detection of organic pollutants
  • 4.3.3.1 Organic pollutants
  • 4.3.3.2 Optical biosensors
  • 4.3.3.3 Electrochemical biosensors
  • 4.3.3.4 Thermal biosensors
  • 4.4 General limitations, challenges, and future prospects of biosensors in wastewater monitoring
  • 4.5 Conclusion
  • References
  • 5 Microbial systems, current trends, and future prospective: a systemic analysis
  • 5.1 Introduction
  • 5.2 Microbiology for soil health, environmental protection, and sustainable agriculture
  • 5.3 Future prospects of environmental microorganisms
  • 5.4 Microbial pesticides
  • 5.5 Microorganisms' impending visions
  • 5.6 Interconnections between plants and soil microorganisms
  • 5.7 Plant acquisition of nutrients: direct uptake from the soil.
  • 5.7.1 Mycorrhizal interactions with plants
  • 5.8 Conclusion and remark
  • References
  • 6 Microbial consortia for pollution remediation-Success stories
  • 6.1 Introduction
  • 6.2 Bioremediation
  • 6.3 Microbial consortia-a multispecialized biological system for bioremediation
  • 6.4 Microbial consortia and degradation of pollutants
  • 6.4.1 Degradation of petroleum components
  • 6.4.2 Remediation of wastewater
  • 6.4.3 Degradation of industrial dyes
  • 6.4.4 Remediation of other organic pollutants
  • 6.5 Conclusion and future perspective
  • Acknowledgment
  • References
  • 7 Biological transformation as a technique in pollution decontamination
  • 7.1 Introduction
  • 7.2 Biological transformation
  • 7.3 Biological transformation classes
  • 7.3.1 Biotransformation
  • 7.3.1.1 Biotransformation of pharmaceutical compounds
  • 7.3.1.2 Biotransformation of metals and metalloids
  • 7.3.1.3 Biotransformation of phenol compounds
  • 7.3.1.4 Biotransformation of pesticides
  • 7.3.1.5 Biotransformation of real effluents
  • 7.3.2 Phytotransformation
  • 7.3.2.1 Phytotransformation of fluorinated compounds
  • 7.3.3 Mycotransformation
  • 7.3.3.1 Mycotransformation of pesticides
  • 7.3.3.2 Mycotransformation of metals
  • 7.3.3.3 Mycotransformation of pharmaceutical compounds
  • 7.3.3.4 Mycotransformation of phenol compounds
  • 7.3.3.5 Mycotransformation of dyes
  • 7.3.4 Phycotransformation
  • 7.3.4.1 Phycotransformation of metals and metalloids
  • 7.3.4.2 Phycotransformation of pharmaceutical compounds
  • 7.3.5 Zootransformation
  • 7.3.5.1 Zootransformation of fluorinated compounds
  • 7.3.5.2 Zootransformation of metals and metalloids
  • 7.4 Factors influencing biological transformation
  • 7.5 Functional genes implicated in biological transformation
  • 7.6 Enzymes involved in biological transformation
  • 7.7 Nanomaterial biological transformation.
  • 7.8 Cometabolic biological transformation
  • 7.8.1 Cometabolic biotransformation
  • 7.8.2 Cometabolic phycotransformation
  • 7.9 Conclusions and future perspectives
  • References
  • 8 Role of polyphosphate accumulating organisms in enhanced biological phosphorous removal
  • 8.1 Introduction
  • 8.2 Natural occurrence of polyphosphate accumulating organisms
  • 8.3 Microbiology of EBPR and polyphosphate accumulating organisms
  • 8.4 Biochemistry of EBPR and phosphate accumulating organism
  • 8.5 EBPR with acetate as a carbon source
  • 8.6 EBPR metabolism with substrates other than acetate
  • 8.7 Enzymes involved in poly P metabolism
  • 8.7.1 Poly P synthesis
  • 8.7.2 Poly P degradation
  • 8.8 EBPR configurations
  • 8.8.1 Mainstream process
  • 8.8.1.1 A/O or A2/O
  • 8.8.1.2 University of Cape Town-modified process
  • 8.8.1.3 Johannesburg configuration
  • 8.8.2 Sidestream
  • 8.8.2.1 PhoStrip
  • 8.8.2.2 Biological-chemical phosphorous and nitrogen removal configuration
  • 8.8.3 Cycling system
  • 8.8.3.1 Biodenipho process
  • 8.8.3.2 Oxidation ditch design
  • 8.9 Parameters to consider in EBPR process
  • 8.9.1 Temperature
  • 8.9.1.1 Recent research on EBPR process in tropical conditions
  • 8.9.2 Carbon source and wastewater composition
  • 8.9.3 pH
  • 8.9.4 Sludge age
  • 8.9.5 Recycle of nitrates
  • 8.9.6 Sludge phosphorous content
  • 8.10 Criteria to monitor effective EBPR process
  • 8.11 Transfer of energy pathway genes in microbial enhanced biological phosphorous removal communities
  • 8.12 Novel and potential EBPR system
  • 8.13 Conclusion and future perspective
  • References
  • 9 Genetically engineered bacteria: a novel technique for environmental decontamination
  • 9.1 Introduction
  • 9.2 Environmental contaminants
  • 9.2.1 Heavy metal contamination
  • 9.2.2 Dye-based hazardous pollutants
  • 9.2.3 Radioactive compounds.
  • 9.2.4 Agricultural chemicals: herbicides, pesticides, and fertilizers
  • 9.2.5 Petroleum and polycyclic aromatic hydrocarbon contaminants
  • 9.2.6 Polychlorinated biphenyls
  • 9.3 Genetically engineered bacteria and their construction
  • 9.4 Genetically engineered bacteria for a sustainable environment
  • 9.4.1 Remediation of toxic heavy metals
  • 9.4.2 Bioremediation of dye by engineered bacteria
  • 9.4.3 Bioremediation of radionuclides
  • 9.4.4 Bioremediation of agricultural chemicals: herbicides, pesticides, and fertilizers
  • 9.4.5 Petroleum and polycyclic aromatic hydrocarbons contaminants
  • 9.4.6 Bioremediation of polychlorinated biphenyls
  • 9.5 Factors affecting bioremediation from genetically engineered bacteria
  • 9.6 Limitations and challenges of in-field release of genetically engineered bacteria
  • 9.7 Survivability and sustenance of genetically engineered bacteria
  • 9.8 Conclusion
  • Acknowledgments
  • Abbreviations
  • References
  • 10 An eco-friendly approach for the degradation of azo dyes and their effluents by Pleurotus florida
  • 10.1 Introduction
  • 10.2 White-rot fungi
  • 10.2.1 Oyster mushroom or Pleurotus florida
  • 10.3 Textile dyes
  • 10.3.1 Description of dyes
  • 10.4 Scenario of textile dyes utilized in India
  • 10.5 Explication of dyeing process in textile industries
  • 10.6 Hallmarks of wastes effected by the textile industry
  • 10.7 Impact of textile dyes on environment
  • 10.8 Dye decolorization methods
  • 10.8.1 Physical method
  • 10.8.2 Chemical method
  • 10.8.3 Biological method
  • 10.9 Oxidative and hydrolytic enzymes of Pleurotus florida used in decolorization of azo dyes
  • 10.9.1 Laccase (E.C 1.10. 3.2)
  • 10.9.2 Manganese peroxidase (E.C. 1.11.1.13)
  • 10.9.3 Lignin peroxidase
  • 10.10 Factors influencing the dye decolorization
  • 10.10.1 Influence of pH and temperature
  • 10.10.2 Impact of nitrogen source.