Cargando…

Surface modified nanomaterials for applications in catalysis : fundamentals, methods and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Gawande, Manoj B., Hussain, Chaudhery Mustansar, Yamauchi, Yusuke
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • SURFACE MODIFIED NANOMATERIALS FOR APPLICATIONS IN CATALYSIS
  • SURFACE MODIFIED NANOMATERIALS FOR APPLICATIONS IN CATALYSIS: FUNDAMENTALS, METHODS AND APPLICATIONS
  • Copyright
  • CONTENTS
  • Contributors
  • About the editors
  • Introduction to surface-modified nanomaterials
  • REFERENCES
  • 1
  • New frontiers for heterogeneous catalysis: surface modification of nanomaterials
  • 1. Introduction: catalysts, nanomaterials (NMs) and nanocatalysts (NCs)
  • 2. Synthetic strategies of NCs
  • 3. Need for surface functionalization
  • 4. Types of NMs and their functionalization procedures
  • 5. Selective applications of surface-functionalized NCs
  • 6. Characterization of surface-functionalized NCs
  • 7. Topics to be covered in this book
  • 8. Summary: present status and future direction
  • Abbreviations
  • References
  • 2
  • Fundamental concepts on surface chemistry for nanoparticle modifications
  • 1. Introduction
  • 1.1 Steric stabilization
  • 1.2 Use of silica nanoparticles for the stabilization of nanoparticles
  • 1.3 Carbon materials in the stabilization of nanoparticles
  • 1.4 Chemical methods of nanoparticle synthesis using various functional surface
  • 2. Esterification reaction method
  • 3. Phosphate ester method
  • 4. In situ modification method
  • 5. Conclusions
  • References
  • 3
  • Synthesis of surface-modified nanomaterials
  • 1. Introduction
  • 2. Nanomaterials surface chemistry and Zeta potential
  • 3. Surface modification of catalytic nanoparticles by thermal and plasma treatment
  • 4. Silane chemical treatment
  • 5. Ligand immobilization techniques to modify catalytic nanoparticles
  • 6. Surface modification via single-atom anchoring
  • 7. Industrial-scale utilization of synthetic methods to prepare surface-modified nanomaterials
  • 8. Challenges, future perspective, and conclusions
  • References.
  • 4
  • Surface modification of nano-based catalytic materials for enhanced water treatment applications
  • 1. Nanomaterials for water treatment
  • 2. Advancement on modification of nanomaterials
  • 3. Examples of nanoscale modified catalytic materials
  • 3.1 TiO2-based materials
  • 3.2 Carbon-based materials for water treatment
  • 3.3 NZVI-based materials for water treatment
  • 3.3.1 Modification needs and routes of modification of ZVI
  • 3.3.2 Surface modifiers
  • 3.3.3 Bimetallic particles
  • 3.3.4 Sulfidation
  • 3.3.5 NZVI supported on various materials
  • 3.3.6 Emulsification
  • 3.3.7 Combined technologies
  • 3.3.8 Examples of water-treatment enhancement of NZVI-based materials
  • 4. Conclusions
  • Acknowledgment
  • References
  • 5
  • Surface-modified nanomaterials-based catalytic materials for water purification, hydrocarbon production, and po ...
  • 1. Introduction
  • 2. Nanocatalyst materials
  • 3. Wastewater treatment
  • 3.1 Zero-valent metal nanocatalysts
  • 3.2 Metal oxide nanocatalysts
  • 3.2.1 TiO2
  • 3.2.2 Fe2O3
  • 3.2.3 ZnO
  • 3.3 Carbon-based nanocatalysts
  • 3.3.1 Functionalized graphene-based nanocatalysts
  • 3.3.2 Functionalized CNT-based nanocatalysts
  • 3.4 Polymer-based nanocatalysts
  • 3.5 Miscellaneous nanocatalysts
  • 4. Nanocatalysts in hydrocarbon production
  • 4.1 Biomass to hydrocarbon
  • 4.1.1 Pyrolysis
  • 4.1.2 Liquefaction
  • 4.1.3 Gasification
  • 4.2 CO2 to methanol and other hydrocarbons
  • 5. Recent advancement and real-time utilization of nanocatalysts
  • 6. Conclusion
  • Acknowledgments
  • References
  • 6
  • Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels
  • 1. Introduction
  • 2. Surface modified nanomaterials (SMNs) for biomass conversion to liquid fuels
  • 2.1 Production of 1, 2-propylene glycol and ethylene glycol
  • 2.2 Production of 1,4-butanediol.
  • 2.3 Production of furfural alcohol and related liquid fuels
  • 2.4 Production of 5-hydroxymethylfurfural and related liquid derivatives
  • 2.5 Production of biodiesel
  • 2.6 Production of liquid hydrocarbons
  • 3. Surface-modified nanomaterials for the transformation of carbon dioxide to liquid fuels
  • 3.1 Reduction of CO2 to methanol
  • 3.2 Reduction of CO2 to ethanol
  • 3.3 Reduction of CO2 to propanol
  • 3.4 Reduction of CO2 to formic acid
  • 4. Future perspectives and conclusion
  • Acknowledgments
  • References
  • 7
  • SMN-based catalytic membranes for environmental catalysis
  • 1. Introduction
  • 2. Challenges in SMNs and catalytic MRs
  • 3. Types of catalytic membrane reactors (MRs)
  • 3.1 Inorganic (silica/metallic) MRs
  • 3.2 Organic (polymeric) MRs
  • 4. Basic overview of polymeric MRs
  • 5. Incorporation of SMNs into polymeric membranes
  • 5.1 Methods of SMNs incorporation into polymeric MRs
  • 5.1.1 Irradiation-based modifications
  • 5.1.1.1 Plasma treatment
  • 5.1.1.2 UV-irradiation
  • 5.1.2 Grafting-based modifications
  • 5.1.2.1 Chemical/electrochemical initiated grafting
  • 5.1.2.2 Photoirradiation-induced grafting
  • 5.1.2.3 High energy radiation (plasma) induced grafting
  • 5.1.3 Surface coating-based modifications
  • 5.1.3.1 Gas-phase coatings
  • 5.1.3.2 Wet-phase coatings
  • 5.2 Characterization methods of SMNs based polymer membranes
  • 5.2.1 Advanced microscopic techniques
  • 5.2.1.1 Cryo-transmission electron microscopy (cryo-TEM/cryo-EM)
  • 5.2.1.2 Atomic force microscopy (AFM)
  • 5.2.1.3 Transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
  • 5.2.2 X-ray spectroscopic techniques
  • 5.2.2.1 X-ray diffraction (XRD)
  • 5.2.2.2 X-ray photon correlation spectroscopy (XPS or XPCS)
  • 6. SMNs based polymeric membrane-assisted catalysis
  • 6.1 Pervaporation for esterification
  • 6.2 Hydrogenation.
  • 6.3 CO2 sequestration: hydration of CO2
  • 7. Summary and future perspectives
  • Abbreviations
  • References
  • 8
  • Semiconductor catalysts based on surface-modified nanomaterials (SMNs) for sensors
  • 1. Introduction
  • 2. Zero-dimensional (0D) nanomaterials
  • 2.1 Quantum dots
  • 2.2 Core-shell nanoparticles, hollow spheres, and nanocluster
  • 3. One-dimensional (1D) nanomaterials
  • 3.1 Synthesis of 1D nanostructures and sensor fabrication
  • 3.2 1D NMs-based sensors
  • 4. Two-dimensional (2D) nanomaterials
  • 5. Tree-dimensional (3D) nanomaterials
  • 6. Conclusion
  • Acknowledgments
  • List of resources
  • References
  • 9
  • Surface-modified carbonaceous nanomaterials for CO2 hydrogenation and fixation
  • 1. Introduction
  • 1.1 Surface modified carbonaceous nanomaterials
  • 2. Basic concepts of CO2 sequestration (hydrogenation and fixation)
  • 3. Heterogeneous catalyst in CO2 hydrogenation
  • 3.1 CO2 hydrogenation to hydrocarbons
  • 3.2 CO2 hydrogenation to alcohols
  • 3.3 CO2 hydrogenation to value-added products
  • 4. Heterogeneous catalyst in CO2 fixation
  • 4.1 CO2 fixation to cyclic carbonates
  • 4.2 CO2 fixation to cyclic carbamates
  • 4.3 CO2 fixation to other value-added products
  • 5. Summary and perspectives
  • References
  • 10
  • Surface-modified nanomaterials for synthesis of pharmaceuticals
  • 1. Introduction
  • 2. Noble metal-based nanoparticles for the synthesis of pharmaceuticals
  • 3. Nonnoble metal-based nanoparticles for the synthesis of pharmaceuticals
  • 4. Conclusions
  • References
  • 11
  • Surface-modified nanomaterial-based catalytic materials for modern industry applications
  • 1. Introduction
  • 2. Scope of the book chapter
  • 3. Active role of surface-modified nanomaterials in industry
  • 3.1 Silica-modified nanomaterials
  • 3.2 Graphene modified nanomaterials
  • 3.3 Magnetic surface-modified nanomaterials.
  • 3.4 TiO2 surface-modified nanomaterials
  • 4. Conclusion
  • References
  • 12
  • Assessment of health, safety, and economics of surface-modified nanomaterials for catalytic applications: a review
  • 1. Introduction
  • 1.1 NMs categories and nomenclature
  • 1.2 Synthesis of SNMs with the application as catalyst
  • 1.3 Different types of SNMs
  • 1.3.1 Carbonaceous SNMs
  • 1.4 Carbon nanotubes
  • 1.5 Fullerene (nC60)
  • 1.6 Graphene-based nanomaterials
  • 1.6.1 Metal and metal oxides
  • 1.7 Other nanomaterials
  • 1.7.1 Quantum dots
  • 2. Human health and safety consequences of SMNs
  • 3. Economic aspects of NMs used as catalysts
  • 3.1 Nano zerovalent iron (nZVI)
  • 3.2 CFM@PDA/Pd composite nanocatalyst
  • 3.3 FeOx/C nanocatalyst
  • 3.4 UV/Ni-TiO2 nanocatalyst
  • 3.5 FePt-Ag nanocatalysts
  • 3.6 Other nanocatalysts
  • 4. Conclusions and future perspectives
  • Acknowledgments
  • References
  • 13
  • Future of SMNs catalysts for industry applications
  • 1. Introduction
  • 2. Nanoparticles catalysts
  • 3. Catalytic applications of nanomaterial
  • 3.1 Surface modification of nanoparticles and techniques
  • 4. Shape and size dependent catalysts and reactions
  • 4.1 Shape dependency of activity in water-gas shift
  • 4.2 Oxidation
  • 4.3 Hydrogenations
  • 5. Metal-isolated single atoms
  • 5.1 Atomic layer deposition method (ALD)
  • 5.2 Isolated cluster site catalysts (ICSC)
  • 5.3 Plasma
  • 6. Conclusion and outlook
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Back Cover.