Stochastic modeling : a thorough guide to evaluate, pre-process, model and compare time series with MATLAB software /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front cover
- Half title
- Title
- Copyright
- Dedication
- Contents
- Preface
- Acknowledgments
- Abbreviations
- Chapter 1 Introduction
- 1.1 Time series
- 1.1.1 Time series in environmental epidemiology
- 1.1.2 Engineering and sequential data
- 1.1.3 Historical data for forecasting future economy
- 1.2 Stochastic and stochastic with exogenous variables
- 1.2.1 Stochastic models
- 1.2.2 Stochastic model structure
- 1.2.3 Model classifications
- 1.3 Data preprocessing
- 1.3.1 Definition of preprocessing
- 1.3.2 Relationship between forecasting and time series structure
- 1.3.3 Distribution and its impact on time series forecasting
- References
- Chapter 2 Preparation & stationarizing
- 2.1 Missing data
- 2.1.1 Linear interpolation
- 2.1.2 Code for linear interpolation
- 2.1.3 Spline interpolation
- 2.1.4 Code for spline interpolation
- 2.1.5 Modified Akima cubic Hermite interpolation
- 2.1.6 Code for MAKIMA
- 2.2 Detecting outliers
- 2.2.1 Grubbs test
- 2.2.2 Grubbs test code
- 2.2.3 Generalized extreme studentized deviate test
- 2.2.4 Generalized Extreme Studentized Deviate test code
- 2.2.5 Moving average and moving median
- 2.2.6 Moving average and moving median codes
- 2.2.7 Quartiles and percentiles
- 2.2.8 Quartiles and percentiles codes
- 2.3 Time series structure and attributes
- 2.3.1 Trend in time series
- 2.3.2 Jump in time series
- 2.3.3 Period in time series
- 2.4 Stationarity
- 2.4.1 Unit root tests for stationarity evaluation
- 2.4.2 Augmented Dickey-Fuller test
- 2.4.3 KPSS test
- 2.4.4 Phillips-Perron test
- 2.4.5 Complementary adjustments for stationary test functions
- 2.5 Deterministic terms detection tests
- 2.5.1 Mann-Kendal test
- 2.5.2 Mann-Whitney test
- 2.5.3 Fisher's g test
- 2.5.4 Correlograms
- 2.5.5 How to determine the nonseasonal or seasonal correlations and the periodicity in time series by using correlograms?
- 2.6 Stationarizing methods
- 2.6.1 Trend analysis
- 2.6.2 Differencing
- 2.6.3 Standardization
- 2.6.4 Spectral analysis
- 2.7 Exercise
- References
- Chapter 3 Distribution evaluation and normalizing
- 3.1 Distribution visualization
- 3.2 Normal distribution definition
- 3.3 Skewness
- 3.4 Kurtosis
- 3.5 Common tests and transforms
- 3.6 Data distribution tests
- 3.6.1 Graphical methods
- 3.6.2 Skewness and kurtosis
- 3.6.3 Anderson-Darling test
- 3.6.4 Lillifors test
- 3.6.5 Jarque-Bera test
- 3.6.6 Shapiro-Wilk test
- 3.7 Normalization transforms
- 3.7.1 Logarithmic
- 3.7.2 Standard logarithmic
- 3.7.3 Box-Cox
- 3.7.4 Yeo-Johnson
- 3.7.5 John-Draper
- 3.7.6 Manly
- 3.8 Exercise
- References
- Chapter 4 Stochastic modeling
- 4.1 Modeling methods overview
- 4.2 Deterministic models
- 4.3 Probabilistic statistical models
- 4.4 Stochastic concepts
- 4.5 Differencing operators in stochastic models
- 4.5.1 Nonseasonal differencing
- 4.5.2 Seasonal differencing
- 4.6 Stochastic models equations