Novel AI and data science advancements for sustainability in the era of COVID-19
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Novel AI and Data Science Advancements for Sustainability in the Era of COVID-19
- Copyright
- Contents
- Contributors
- Chapter 1: Deep learning-based hybrid models for prediction of COVID-19 using chest X-ray
- 1. Introduction
- 2. Related work
- 3. Modeling
- 3.1. PCA-feature ensembles
- 3.2. Optimally weighted majority voting
- 3.3. Feature extraction
- 3.4. Layer modification
- 4. Experimental setup
- 4.1. Baseline models
- 4.1.1. VGG-16 (Simonyan & Zisserman, 2015)
- 4.1.2. ResNet 50 (He et al., 2016)
- 4.1.3. Inception V3 (Szegedy et al., 2015)
- 4.2. Dataset
- 4.3. Data augmentation
- 4.4. Other preprocessing
- 4.5. Evaluation metrics
- 4.5.1. Accuracy
- 4.5.2. Precision
- 4.5.3. Recall
- 4.5.4. F-1 score
- 4.6. Experimental details
- 5. Results and discussion
- 6. Conclusions
- References
- Chapter 2: Investigation of COVID-19 and scientific analysis big data analytics with the help of machine learning
- 1. Introduction and background
- 2. Literature review
- 3. COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions
- 3.1. Deep learning applications for COVID-19
- 3.2. Big data analytics as a tool for fighting pandemics: A systematic review of literature
- 4. Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection ...
- 5. Significant applications of big data in COVID-19 pandemic
- 6. Research problem
- 7. Research questions
- 8. Objectives
- 9. Methodology
- 9.1. Techniques
- 10. Algorithm
- 11. Conclusion
- 11.1. Big data
- 11.2. Machine learning
- 11.3. COVID-19
- Acknowledgment
- References
- Chapter 3: Designing a conceptual model in the artificial intelligence environment for the health care sector
- 1. Introduction
- 2. Background
- 3. Literature review
- 4. Approach suggested for designing a conceptual model
- 5. Selection of concepts in information and communication technology
- 5.1. Artificial intelligence
- 5.2. Role of artificial intelligence
- 5.3. Machine learning
- 5.4. Algorithms
- 5.5. Data warehouse
- 5.6. Virtual reality
- 5.7. Cloud computing
- 6. Databases related to classification of diseases, digital image code, and viruses taxonomy
- 6.1. International Classification of Diseases (ICD)
- 6.2. Digital Imaging and Communications in Medicine (DICOM)
- 6.3. International Committee on the Taxonomy of Viruses (ICTV)
- 7. Role of core team
- 7.1. Medical research activities
- 7.2. Virtual medical research center
- 8. Overview of viruses
- 8.1. Viruses
- 8.2. Spreading vectors
- 8.3. Human immunodeficiency viruses
- 8.4. Role of immune system
- 8.5. Parts of immune system
- 8.6. Characteristics of immune system
- 8.6.1. White blood cells
- 8.6.2. Antibodies
- 8.6.3. Complement system
- 8.6.4. Lymphatic system