|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_on1309864605 |
003 |
OCoLC |
005 |
20231120010639.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
220408s2022 enk o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d EBLCP
|d OCLCO
|d N$T
|d OCLCF
|d OCLCQ
|d OCL
|d OCLCO
|
020 |
|
|
|a 9780323903783
|q (electronic bk.)
|
020 |
|
|
|a 0323903789
|q (electronic bk.)
|
020 |
|
|
|z 9780323900546
|
020 |
|
|
|z 0323900542
|
035 |
|
|
|a (OCoLC)1309864605
|
050 |
|
4 |
|a Q335
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
0 |
0 |
|a Novel AI and data science advancements for sustainability in the era of COVID-19
|h [electronic resource] /
|c edited by Victor Chang, Mohamed Abdel-Basset, Muthu Ramachandran, Nicolas Green, Gary Wills.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2022.
|
300 |
|
|
|a 1 online resource
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Novel AI and Data Science Advancements for Sustainability in the Era of COVID-19 -- Copyright -- Contents -- Contributors -- Chapter 1: Deep learning-based hybrid models for prediction of COVID-19 using chest X-ray -- 1. Introduction -- 2. Related work -- 3. Modeling -- 3.1. PCA-feature ensembles -- 3.2. Optimally weighted majority voting -- 3.3. Feature extraction -- 3.4. Layer modification -- 4. Experimental setup -- 4.1. Baseline models -- 4.1.1. VGG-16 (Simonyan & Zisserman, 2015) -- 4.1.2. ResNet 50 (He et al., 2016) -- 4.1.3. Inception V3 (Szegedy et al., 2015) -- 4.2. Dataset
|
505 |
8 |
|
|a 4.3. Data augmentation -- 4.4. Other preprocessing -- 4.5. Evaluation metrics -- 4.5.1. Accuracy -- 4.5.2. Precision -- 4.5.3. Recall -- 4.5.4. F-1 score -- 4.6. Experimental details -- 5. Results and discussion -- 6. Conclusions -- References -- Chapter 2: Investigation of COVID-19 and scientific analysis big data analytics with the help of machine learning -- 1. Introduction and background -- 2. Literature review -- 3. COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions -- 3.1. Deep learning applications for COVID-19
|
505 |
8 |
|
|a 3.2. Big data analytics as a tool for fighting pandemics: A systematic review of literature -- 4. Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection ... -- 5. Significant applications of big data in COVID-19 pandemic -- 6. Research problem -- 7. Research questions -- 8. Objectives -- 9. Methodology -- 9.1. Techniques -- 10. Algorithm -- 11. Conclusion -- 11.1. Big data -- 11.2. Machine learning -- 11.3. COVID-19 -- Acknowledgment -- References
|
505 |
8 |
|
|a Chapter 3: Designing a conceptual model in the artificial intelligence environment for the health care sector -- 1. Introduction -- 2. Background -- 3. Literature review -- 4. Approach suggested for designing a conceptual model -- 5. Selection of concepts in information and communication technology -- 5.1. Artificial intelligence -- 5.2. Role of artificial intelligence -- 5.3. Machine learning -- 5.4. Algorithms -- 5.5. Data warehouse -- 5.6. Virtual reality -- 5.7. Cloud computing -- 6. Databases related to classification of diseases, digital image code, and viruses taxonomy
|
505 |
8 |
|
|a 6.1. International Classification of Diseases (ICD) -- 6.2. Digital Imaging and Communications in Medicine (DICOM) -- 6.3. International Committee on the Taxonomy of Viruses (ICTV) -- 7. Role of core team -- 7.1. Medical research activities -- 7.2. Virtual medical research center -- 8. Overview of viruses -- 8.1. Viruses -- 8.2. Spreading vectors -- 8.3. Human immunodeficiency viruses -- 8.4. Role of immune system -- 8.5. Parts of immune system -- 8.6. Characteristics of immune system -- 8.6.1. White blood cells -- 8.6.2. Antibodies -- 8.6.3. Complement system -- 8.6.4. Lymphatic system
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a COVID-19 Pandemic, 2020-
|x Data processing.
|
650 |
|
0 |
|a Big data.
|
650 |
|
2 |
|a Artificial Intelligence
|0 (DNLM)D001185
|
650 |
|
6 |
|a Intelligence artificielle.
|0 (CaQQLa)201-0008626
|
650 |
|
6 |
|a Pand�emie de COVID-19, 2020-
|0 (CaQQLa)000314058
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
6 |
|a Donn�ees volumineuses.
|0 (CaQQLa)000284673
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|0 (CStmoGRI)aat300251574
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|0 (OCoLC)fst00817247
|
650 |
|
7 |
|a Big data
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Electronic data processing
|2 fast
|0 (OCoLC)fst00906956
|
647 |
|
7 |
|a COVID-19 Pandemic
|d (2020-)
|2 fast
|0 (OCoLC)fst02024716
|
648 |
|
7 |
|a Since 2020
|2 fast
|
700 |
1 |
|
|a Chang, Victor.
|
700 |
1 |
|
|a Abdel-Basset, Mohamed.
|
700 |
1 |
|
|a Ramachandran, Muthu.
|
700 |
1 |
|
|a Green, Nicolas.
|
700 |
1 |
|
|a Wills, Gary.
|
776 |
0 |
8 |
|i Print version:
|z 0323900542
|z 9780323900546
|w (OCoLC)1265457381
|
776 |
0 |
8 |
|i Print version:
|t Novel AI and data science advancements for sustainability in the era of COVID-19
|z 9780323900546
|w (OCoLC)1285699706
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323900546
|z Texto completo
|