Cargando…

Novel AI and data science advancements for sustainability in the era of COVID-19

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Chang, Victor, Abdel-Basset, Mohamed, Ramachandran, Muthu, Green, Nicolas, Wills, Gary
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_on1309864605
003 OCoLC
005 20231120010639.0
006 m o d
007 cr un|---aucuu
008 220408s2022 enk o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d EBLCP  |d OCLCO  |d N$T  |d OCLCF  |d OCLCQ  |d OCL  |d OCLCO 
020 |a 9780323903783  |q (electronic bk.) 
020 |a 0323903789  |q (electronic bk.) 
020 |z 9780323900546 
020 |z 0323900542 
035 |a (OCoLC)1309864605 
050 4 |a Q335 
082 0 4 |a 006.3  |2 23 
245 0 0 |a Novel AI and data science advancements for sustainability in the era of COVID-19  |h [electronic resource] /  |c edited by Victor Chang, Mohamed Abdel-Basset, Muthu Ramachandran, Nicolas Green, Gary Wills. 
260 |a London :  |b Academic Press,  |c 2022. 
300 |a 1 online resource 
588 0 |a Print version record. 
505 0 |a Intro -- Novel AI and Data Science Advancements for Sustainability in the Era of COVID-19 -- Copyright -- Contents -- Contributors -- Chapter 1: Deep learning-based hybrid models for prediction of COVID-19 using chest X-ray -- 1. Introduction -- 2. Related work -- 3. Modeling -- 3.1. PCA-feature ensembles -- 3.2. Optimally weighted majority voting -- 3.3. Feature extraction -- 3.4. Layer modification -- 4. Experimental setup -- 4.1. Baseline models -- 4.1.1. VGG-16 (Simonyan & Zisserman, 2015) -- 4.1.2. ResNet 50 (He et al., 2016) -- 4.1.3. Inception V3 (Szegedy et al., 2015) -- 4.2. Dataset 
505 8 |a 4.3. Data augmentation -- 4.4. Other preprocessing -- 4.5. Evaluation metrics -- 4.5.1. Accuracy -- 4.5.2. Precision -- 4.5.3. Recall -- 4.5.4. F-1 score -- 4.6. Experimental details -- 5. Results and discussion -- 6. Conclusions -- References -- Chapter 2: Investigation of COVID-19 and scientific analysis big data analytics with the help of machine learning -- 1. Introduction and background -- 2. Literature review -- 3. COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions -- 3.1. Deep learning applications for COVID-19 
505 8 |a 3.2. Big data analytics as a tool for fighting pandemics: A systematic review of literature -- 4. Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection ... -- 5. Significant applications of big data in COVID-19 pandemic -- 6. Research problem -- 7. Research questions -- 8. Objectives -- 9. Methodology -- 9.1. Techniques -- 10. Algorithm -- 11. Conclusion -- 11.1. Big data -- 11.2. Machine learning -- 11.3. COVID-19 -- Acknowledgment -- References 
505 8 |a Chapter 3: Designing a conceptual model in the artificial intelligence environment for the health care sector -- 1. Introduction -- 2. Background -- 3. Literature review -- 4. Approach suggested for designing a conceptual model -- 5. Selection of concepts in information and communication technology -- 5.1. Artificial intelligence -- 5.2. Role of artificial intelligence -- 5.3. Machine learning -- 5.4. Algorithms -- 5.5. Data warehouse -- 5.6. Virtual reality -- 5.7. Cloud computing -- 6. Databases related to classification of diseases, digital image code, and viruses taxonomy 
505 8 |a 6.1. International Classification of Diseases (ICD) -- 6.2. Digital Imaging and Communications in Medicine (DICOM) -- 6.3. International Committee on the Taxonomy of Viruses (ICTV) -- 7. Role of core team -- 7.1. Medical research activities -- 7.2. Virtual medical research center -- 8. Overview of viruses -- 8.1. Viruses -- 8.2. Spreading vectors -- 8.3. Human immunodeficiency viruses -- 8.4. Role of immune system -- 8.5. Parts of immune system -- 8.6. Characteristics of immune system -- 8.6.1. White blood cells -- 8.6.2. Antibodies -- 8.6.3. Complement system -- 8.6.4. Lymphatic system 
650 0 |a Artificial intelligence. 
650 0 |a COVID-19 Pandemic, 2020-  |x Data processing. 
650 0 |a Big data. 
650 2 |a Artificial Intelligence  |0 (DNLM)D001185 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 6 |a Pand�emie de COVID-19, 2020-  |0 (CaQQLa)000314058  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a Donn�ees volumineuses.  |0 (CaQQLa)000284673 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Big data  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Electronic data processing  |2 fast  |0 (OCoLC)fst00906956 
647 7 |a COVID-19 Pandemic  |d (2020-)  |2 fast  |0 (OCoLC)fst02024716 
648 7 |a Since 2020  |2 fast 
700 1 |a Chang, Victor. 
700 1 |a Abdel-Basset, Mohamed. 
700 1 |a Ramachandran, Muthu. 
700 1 |a Green, Nicolas. 
700 1 |a Wills, Gary. 
776 0 8 |i Print version:  |z 0323900542  |z 9780323900546  |w (OCoLC)1265457381 
776 0 8 |i Print version:  |t Novel AI and data science advancements for sustainability in the era of COVID-19  |z 9780323900546  |w (OCoLC)1285699706 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323900546  |z Texto completo