Cargando…

Electrochemical membrane technology for water and wastewater treatment /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wang, Zhiwei
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Electrochemical Membrane Technology for Water and Wastewater Treatment
  • Copyright Page
  • Contents
  • List of contributors
  • 1. Introduction to electrochemical membrane technology: current status and recent developments
  • 1.1 Introduction
  • 1.2 Fundamentals of electrochemical membrane technology
  • 1.2.1 Definition of electrochemical membrane technology
  • 1.2.1.1 Electrochemical Processes
  • 1.2.1.2 Membrane processes
  • 1.2.1.3 Electrochemical membrane technology
  • 1.2.2 Classification of electrochemical membrane technologies
  • 1.2.3 Working principles of electrochemical membrane technologies
  • 1.2.4 Preparations of electrochemical membranes
  • 1.2.4.1 Preparation of ion exchange membrane
  • 1.2.4.2 Preparation of conductive membrane
  • 1.3 Applications of electrochemical membrane technologies
  • 1.3.1 Ion exchange membrane based electrochemical membrane technologies
  • 1.3.1.1 Electrodialysis
  • 1.3.1.2 Reverse electrodialysis
  • 1.3.1.3 Membrane capacitive deionization
  • 1.3.1.4 Microbial fuel cell
  • 1.3.1.5 Microbial desalination cell
  • 1.3.2 Conductive membrane based electrochemical membrane technologies
  • 1.3.2.1 Membrane fouling mitigation
  • 1.3.2.2 Electrochemical membrane oxidation
  • 1.3.2.3 Electrochemical membrane reduction
  • 1.4 Conclusions and perspectives
  • Acknowledgments
  • References
  • 2. Fundamentals of electrochemical membrane technology
  • 2.1 Introduction
  • 2.2 Electrokinetic ions/colloids
  • 2.2.1 Electromigration
  • 2.2.1.1 Ion electromigration
  • 2.2.1.2 Electric mobility and migration number of ions
  • 2.2.2 Electrophoresis
  • 2.2.3 Electroosmosis
  • 2.3 Ion transmembrane mass transfer
  • 2.3.1 Nernst-Planck equation
  • 2.3.2 Donnan effect
  • 2.4 Electrical double layer on membrane surface
  • 2.4.1 Electrical double layer structure.
  • 2.4.1.1 Formation mechanism and configuration of electrical double layer
  • 2.4.1.2 Existing forms of ions
  • 2.4.2 Electrical double layer model
  • 2.4.2.1 Helmholtz model
  • 2.4.2.2 Gouy-Chapman model
  • 2.4.2.3 Gouy-Chapman-Stern model
  • 2.4.2.4 Modified Donnan model
  • 2.4.3 Regulation mechanism of electrical double layer on conductive membrane surface
  • 2.5 Polarization of organic molecules
  • 2.5.1 Polarity and dipole moment of molecules
  • 2.5.2 Deformability and polarization of molecule
  • 2.5.3 Molecular polarization in electrochemical membrane separation
  • 2.6 Electrochemical reactions on electrode/membrane
  • 2.6.1 Fundamentals of electrochemical reactions
  • 2.6.2 Reactive species in electrochemical process
  • 2.6.3 Membrane electrode process
  • 2.7 Challenges and perspectives
  • Acknowledgment
  • References
  • 3. Electrochemical membrane materials and modules
  • 3.1 Introduction
  • 3.2 Materials for conductive membranes
  • 3.2.1 Polymer-based membrane materials
  • 3.2.1.1 Composite membranes
  • 3.2.1.2 Mixed matrix membranes
  • 3.2.1.3 Summary of preparation methods
  • 3.2.2 Metal and metal-oxide membrane materials
  • 3.2.2.1 Metallic membrane
  • 3.2.2.2 Metal oxide-metal composite membrane
  • 3.2.2.3 Summary of preparation methods
  • 3.2.3 Carbon-based membrane materials and MXene
  • 3.2.3.1 Carbon nanotube-based membranes
  • 3.2.3.2 Graphene-based membranes
  • 3.2.3.3 MXene-based membranes
  • 3.2.3.4 Summary of preparation methods
  • 3.3 Materials for ion exchange membranes
  • 3.3.1 Homogeneous ion exchange membranes
  • 3.3.2 Heterogeneous ion exchange membranes
  • 3.3.3 Pseudohomogeneous ion exchange membranes
  • 3.3.4 Mixed matrix ion exchange membranes
  • 3.4 Electrochemical membrane modules
  • 3.5 Conclusions and perspectives
  • Acknowledgment
  • References.
  • 4. Electrified carbon nanotube membrane technology for water treatment
  • 4.1 Introduction
  • 4.2 Fabrication of electroactive membranes
  • 4.3 Reactor configuration
  • 4.4 Environmental applications of electrochemical CNT membranes
  • 4.4.1 Degradation of organic contaminants
  • 4.4.1.1 Direct electro-oxidation of contaminants
  • 4.4.1.2 Indirect electro-oxidation of contaminants
  • 4.4.1.2.1 Anodic OH-mediated decontamination
  • 4.4.1.2.2 Active-chlorine-mediated decontamination
  • 4.4.1.2.3 Electro-Fenton driven decontamination
  • 4.4.1.3 Energy consumption
  • 4.4.2 Decontamination of toxic inorganic contaminants
  • 4.4.3 Construction of electroactive antifouling membranes
  • 4.4.3.1 Antifouling membrane
  • 4.4.3.2 Biofouling mitigation
  • 4.4.4 Nanoconfinement effects in carbon nanotube-based membrane technologies
  • 4.5 Conclusions and perspectives
  • Acknowledgments
  • References
  • 5. Electrochemical membrane technology for disinfection
  • 5.1 Introduction
  • 5.2 Principal mechanisms of electrochemical membrane technology for disinfection
  • 5.2.1 Principal mechanisms involved in the disinfection process to be achieved by electrochemical membranes
  • 5.2.2 Direct oxidation
  • 5.2.3 Indirect oxidation
  • 5.2.4 Electroporation
  • 5.2.5 Other mechanisms
  • 5.2.6 Performance comparison of different disinfection mechanisms
  • 5.2.6.1 Performance comparison of disinfection mechanisms based on shortest contact time
  • 5.2.6.2 Performance comparison of different disinfection mechanisms based on EEO
  • 5.3 Reactor configuration of electrochemical membrane for disinfection
  • 5.3.1 Development progress of the reactor configuration
  • 5.3.2 Stirred reactor applied in electrochemical membrane for disinfection
  • 5.3.3 Flow-by reactor applied in electrochemical membrane for disinfection.
  • 5.3.4 Flow-through reactor applied in electrochemical membrane for disinfection
  • 5.3.5 Evaluation and comparison of different configurations
  • 5.4 Limitations and challenges of electrochemical membrane disinfection technology
  • 5.5 Conclusions and perspectives
  • Acknowledgment
  • References
  • 6. Electrochemical membrane bioreactors for wastewater treatment
  • 6.1 Introduction
  • 6.2 Pollutant removal
  • 6.2.1 Removal of organic pollutants in the electrochemical membrane bioreactor
  • 6.2.2 Removal of nitrogen in the electrochemical membrane bioreactor
  • 6.2.3 Removal of phosphorus in the electrochemical membrane bioreactor
  • 6.2.4 Removal of nonconventional pollutants in the electrochemical membrane bioreactor
  • 6.2.4.1 Removal of phenols
  • 6.2.4.2 Removal of trace organic pollutants
  • 6.2.4.3 Removal of pathogenic viruses
  • 6.3 Membrane fouling mitigation
  • 6.3.1 Mechanisms of fouling mitigation
  • 6.3.2 Mixed liquor properties and fouling in electrochemical membrane bioreactors
  • 6.3.2.1 Concentration of fouling substances
  • 6.3.2.2 Properties of sludge/foulant particles
  • 6.4 Operating conditions, materials, and configurations
  • 6.4.1 Current density and duration of application of electric field
  • 6.4.2 Electrode materials
  • 6.4.3 Configurations and membrane materials
  • 6.5 Microbiological community
  • 6.6 Energy consumption
  • 6.7 Challenges and future prospects
  • 6.8 Conclusions
  • References
  • 7. Electrochemical membrane technology for fouling control
  • 7.1 Introduction
  • 7.2 Understanding membrane fouling
  • 7.2.1 Fouling and antifouling strategies
  • 7.2.2 Classification of fouling according to the resistance-in-series model
  • 7.2.3 Factors affecting fouling in electrochemical membrane technology
  • 7.3 Electrochemical membrane materials
  • 7.3.1 Nonelectroconductive membranes
  • 7.3.2 Electroconductive membranes.
  • 7.3.2.1 Electroconductive polymeric membranes
  • 7.3.2.2 Electroconductive carbon membranes
  • 7.3.2.3 Electroconductive inorganic membranes
  • 7.4 Electrochemical membrane process configurations
  • 7.5 Electrochemical reactions
  • 7.5.1 Electrophoresis
  • 7.5.2 Electrocoagulation/electroflotation
  • 7.5.3 Electrochemical oxidation
  • 7.6 Electrical and electrochemical fouling control
  • 7.6.1 Two-stage serial processes
  • 7.6.2 Single-stage hybrid process
  • 7.6.3 Electrochemical MBR
  • 7.6.4 Bifunctional membrane process
  • 7.6.4.1 Electrostatic repulsion and electrophoretic effects
  • 7.6.4.2 Electrical/electrochemical inactivation of microorganisms
  • 7.6.4.3 Bubble creation and electrolytic cleaning
  • 7.6.5 Energy consumption for membrane fouling control
  • 7.7 Concluding remarks and future research needs
  • Acknowledgment
  • References
  • 8. Electrochemical membrane technology for environmental remediation
  • 8.1 Introduction
  • 8.2 Electrodialytic remediation
  • 8.2.1 Fundamentals
  • 8.2.2 Critical operating parameters and performance indicators
  • 8.2.2.1 Current density and voltage drop
  • 8.2.2.2 Remediation time
  • 8.2.2.3 Liquid-solid ratio of the contaminated media and stirring
  • 8.2.2.4 pH and water content
  • 8.2.2.5 Contaminant speciation and removal
  • 8.2.3 Mathematical simulation/modeling methods for electrodialytic remediation
  • 8.2.3.1 Univariate linear regressions
  • 8.2.3.2 Multiple linear regression and principal component regression
  • 8.2.3.3 Projection to latent structures
  • 8.2.4 Emerging applications of electrodialytic remediation
  • 8.2.4.1 Use of flow electrodes in electrodialytic remediation
  • 8.2.4.2 Electrodialytic processes for resource recovery and reactant delivery
  • 8.3 Electrocatalytic remediation
  • 8.3.1 Fundamentals
  • 8.3.2 3D electrochemical system treating low ionic-strength water.