Electrochemical membrane technology for water and wastewater treatment /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Electrochemical Membrane Technology for Water and Wastewater Treatment
- Copyright Page
- Contents
- List of contributors
- 1. Introduction to electrochemical membrane technology: current status and recent developments
- 1.1 Introduction
- 1.2 Fundamentals of electrochemical membrane technology
- 1.2.1 Definition of electrochemical membrane technology
- 1.2.1.1 Electrochemical Processes
- 1.2.1.2 Membrane processes
- 1.2.1.3 Electrochemical membrane technology
- 1.2.2 Classification of electrochemical membrane technologies
- 1.2.3 Working principles of electrochemical membrane technologies
- 1.2.4 Preparations of electrochemical membranes
- 1.2.4.1 Preparation of ion exchange membrane
- 1.2.4.2 Preparation of conductive membrane
- 1.3 Applications of electrochemical membrane technologies
- 1.3.1 Ion exchange membrane based electrochemical membrane technologies
- 1.3.1.1 Electrodialysis
- 1.3.1.2 Reverse electrodialysis
- 1.3.1.3 Membrane capacitive deionization
- 1.3.1.4 Microbial fuel cell
- 1.3.1.5 Microbial desalination cell
- 1.3.2 Conductive membrane based electrochemical membrane technologies
- 1.3.2.1 Membrane fouling mitigation
- 1.3.2.2 Electrochemical membrane oxidation
- 1.3.2.3 Electrochemical membrane reduction
- 1.4 Conclusions and perspectives
- Acknowledgments
- References
- 2. Fundamentals of electrochemical membrane technology
- 2.1 Introduction
- 2.2 Electrokinetic ions/colloids
- 2.2.1 Electromigration
- 2.2.1.1 Ion electromigration
- 2.2.1.2 Electric mobility and migration number of ions
- 2.2.2 Electrophoresis
- 2.2.3 Electroosmosis
- 2.3 Ion transmembrane mass transfer
- 2.3.1 Nernst-Planck equation
- 2.3.2 Donnan effect
- 2.4 Electrical double layer on membrane surface
- 2.4.1 Electrical double layer structure.
- 2.4.1.1 Formation mechanism and configuration of electrical double layer
- 2.4.1.2 Existing forms of ions
- 2.4.2 Electrical double layer model
- 2.4.2.1 Helmholtz model
- 2.4.2.2 Gouy-Chapman model
- 2.4.2.3 Gouy-Chapman-Stern model
- 2.4.2.4 Modified Donnan model
- 2.4.3 Regulation mechanism of electrical double layer on conductive membrane surface
- 2.5 Polarization of organic molecules
- 2.5.1 Polarity and dipole moment of molecules
- 2.5.2 Deformability and polarization of molecule
- 2.5.3 Molecular polarization in electrochemical membrane separation
- 2.6 Electrochemical reactions on electrode/membrane
- 2.6.1 Fundamentals of electrochemical reactions
- 2.6.2 Reactive species in electrochemical process
- 2.6.3 Membrane electrode process
- 2.7 Challenges and perspectives
- Acknowledgment
- References
- 3. Electrochemical membrane materials and modules
- 3.1 Introduction
- 3.2 Materials for conductive membranes
- 3.2.1 Polymer-based membrane materials
- 3.2.1.1 Composite membranes
- 3.2.1.2 Mixed matrix membranes
- 3.2.1.3 Summary of preparation methods
- 3.2.2 Metal and metal-oxide membrane materials
- 3.2.2.1 Metallic membrane
- 3.2.2.2 Metal oxide-metal composite membrane
- 3.2.2.3 Summary of preparation methods
- 3.2.3 Carbon-based membrane materials and MXene
- 3.2.3.1 Carbon nanotube-based membranes
- 3.2.3.2 Graphene-based membranes
- 3.2.3.3 MXene-based membranes
- 3.2.3.4 Summary of preparation methods
- 3.3 Materials for ion exchange membranes
- 3.3.1 Homogeneous ion exchange membranes
- 3.3.2 Heterogeneous ion exchange membranes
- 3.3.3 Pseudohomogeneous ion exchange membranes
- 3.3.4 Mixed matrix ion exchange membranes
- 3.4 Electrochemical membrane modules
- 3.5 Conclusions and perspectives
- Acknowledgment
- References.
- 4. Electrified carbon nanotube membrane technology for water treatment
- 4.1 Introduction
- 4.2 Fabrication of electroactive membranes
- 4.3 Reactor configuration
- 4.4 Environmental applications of electrochemical CNT membranes
- 4.4.1 Degradation of organic contaminants
- 4.4.1.1 Direct electro-oxidation of contaminants
- 4.4.1.2 Indirect electro-oxidation of contaminants
- 4.4.1.2.1 Anodic OH-mediated decontamination
- 4.4.1.2.2 Active-chlorine-mediated decontamination
- 4.4.1.2.3 Electro-Fenton driven decontamination
- 4.4.1.3 Energy consumption
- 4.4.2 Decontamination of toxic inorganic contaminants
- 4.4.3 Construction of electroactive antifouling membranes
- 4.4.3.1 Antifouling membrane
- 4.4.3.2 Biofouling mitigation
- 4.4.4 Nanoconfinement effects in carbon nanotube-based membrane technologies
- 4.5 Conclusions and perspectives
- Acknowledgments
- References
- 5. Electrochemical membrane technology for disinfection
- 5.1 Introduction
- 5.2 Principal mechanisms of electrochemical membrane technology for disinfection
- 5.2.1 Principal mechanisms involved in the disinfection process to be achieved by electrochemical membranes
- 5.2.2 Direct oxidation
- 5.2.3 Indirect oxidation
- 5.2.4 Electroporation
- 5.2.5 Other mechanisms
- 5.2.6 Performance comparison of different disinfection mechanisms
- 5.2.6.1 Performance comparison of disinfection mechanisms based on shortest contact time
- 5.2.6.2 Performance comparison of different disinfection mechanisms based on EEO
- 5.3 Reactor configuration of electrochemical membrane for disinfection
- 5.3.1 Development progress of the reactor configuration
- 5.3.2 Stirred reactor applied in electrochemical membrane for disinfection
- 5.3.3 Flow-by reactor applied in electrochemical membrane for disinfection.
- 5.3.4 Flow-through reactor applied in electrochemical membrane for disinfection
- 5.3.5 Evaluation and comparison of different configurations
- 5.4 Limitations and challenges of electrochemical membrane disinfection technology
- 5.5 Conclusions and perspectives
- Acknowledgment
- References
- 6. Electrochemical membrane bioreactors for wastewater treatment
- 6.1 Introduction
- 6.2 Pollutant removal
- 6.2.1 Removal of organic pollutants in the electrochemical membrane bioreactor
- 6.2.2 Removal of nitrogen in the electrochemical membrane bioreactor
- 6.2.3 Removal of phosphorus in the electrochemical membrane bioreactor
- 6.2.4 Removal of nonconventional pollutants in the electrochemical membrane bioreactor
- 6.2.4.1 Removal of phenols
- 6.2.4.2 Removal of trace organic pollutants
- 6.2.4.3 Removal of pathogenic viruses
- 6.3 Membrane fouling mitigation
- 6.3.1 Mechanisms of fouling mitigation
- 6.3.2 Mixed liquor properties and fouling in electrochemical membrane bioreactors
- 6.3.2.1 Concentration of fouling substances
- 6.3.2.2 Properties of sludge/foulant particles
- 6.4 Operating conditions, materials, and configurations
- 6.4.1 Current density and duration of application of electric field
- 6.4.2 Electrode materials
- 6.4.3 Configurations and membrane materials
- 6.5 Microbiological community
- 6.6 Energy consumption
- 6.7 Challenges and future prospects
- 6.8 Conclusions
- References
- 7. Electrochemical membrane technology for fouling control
- 7.1 Introduction
- 7.2 Understanding membrane fouling
- 7.2.1 Fouling and antifouling strategies
- 7.2.2 Classification of fouling according to the resistance-in-series model
- 7.2.3 Factors affecting fouling in electrochemical membrane technology
- 7.3 Electrochemical membrane materials
- 7.3.1 Nonelectroconductive membranes
- 7.3.2 Electroconductive membranes.
- 7.3.2.1 Electroconductive polymeric membranes
- 7.3.2.2 Electroconductive carbon membranes
- 7.3.2.3 Electroconductive inorganic membranes
- 7.4 Electrochemical membrane process configurations
- 7.5 Electrochemical reactions
- 7.5.1 Electrophoresis
- 7.5.2 Electrocoagulation/electroflotation
- 7.5.3 Electrochemical oxidation
- 7.6 Electrical and electrochemical fouling control
- 7.6.1 Two-stage serial processes
- 7.6.2 Single-stage hybrid process
- 7.6.3 Electrochemical MBR
- 7.6.4 Bifunctional membrane process
- 7.6.4.1 Electrostatic repulsion and electrophoretic effects
- 7.6.4.2 Electrical/electrochemical inactivation of microorganisms
- 7.6.4.3 Bubble creation and electrolytic cleaning
- 7.6.5 Energy consumption for membrane fouling control
- 7.7 Concluding remarks and future research needs
- Acknowledgment
- References
- 8. Electrochemical membrane technology for environmental remediation
- 8.1 Introduction
- 8.2 Electrodialytic remediation
- 8.2.1 Fundamentals
- 8.2.2 Critical operating parameters and performance indicators
- 8.2.2.1 Current density and voltage drop
- 8.2.2.2 Remediation time
- 8.2.2.3 Liquid-solid ratio of the contaminated media and stirring
- 8.2.2.4 pH and water content
- 8.2.2.5 Contaminant speciation and removal
- 8.2.3 Mathematical simulation/modeling methods for electrodialytic remediation
- 8.2.3.1 Univariate linear regressions
- 8.2.3.2 Multiple linear regression and principal component regression
- 8.2.3.3 Projection to latent structures
- 8.2.4 Emerging applications of electrodialytic remediation
- 8.2.4.1 Use of flow electrodes in electrodialytic remediation
- 8.2.4.2 Electrodialytic processes for resource recovery and reactant delivery
- 8.3 Electrocatalytic remediation
- 8.3.1 Fundamentals
- 8.3.2 3D electrochemical system treating low ionic-strength water.