|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_on1309128927 |
003 |
OCoLC |
005 |
20231120010639.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
220407s2022 ne o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|c YDX
|d OPELS
|d OCLCO
|d OCLCF
|d UKMGB
|d SFB
|d UKAHL
|d OCLCQ
|d YDX
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC224943
|2 bnb
|
016 |
7 |
|
|a 020490042
|2 Uk
|
020 |
|
|
|a 9780323859875
|q (electronic bk.)
|
020 |
|
|
|a 0323859879
|q (electronic bk.)
|
020 |
|
|
|z 9780128244708
|
020 |
|
|
|z 0128244704
|
035 |
|
|
|a (OCoLC)1309128927
|
050 |
|
4 |
|a TD745
|
082 |
0 |
4 |
|a 628.1/62
|2 23
|
245 |
0 |
0 |
|a Electrochemical membrane technology for water and wastewater treatment /
|c edited by Zhiwei Wang [and more].
|
260 |
|
|
|a Amsterdam, Netherlands :
|b Elsevier,
|c 2022.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
505 |
0 |
|
|a Front Cover -- Electrochemical Membrane Technology for Water and Wastewater Treatment -- Copyright Page -- Contents -- List of contributors -- 1. Introduction to electrochemical membrane technology: current status and recent developments -- 1.1 Introduction -- 1.2 Fundamentals of electrochemical membrane technology -- 1.2.1 Definition of electrochemical membrane technology -- 1.2.1.1 Electrochemical Processes -- 1.2.1.2 Membrane processes -- 1.2.1.3 Electrochemical membrane technology -- 1.2.2 Classification of electrochemical membrane technologies -- 1.2.3 Working principles of electrochemical membrane technologies -- 1.2.4 Preparations of electrochemical membranes -- 1.2.4.1 Preparation of ion exchange membrane -- 1.2.4.2 Preparation of conductive membrane -- 1.3 Applications of electrochemical membrane technologies -- 1.3.1 Ion exchange membrane based electrochemical membrane technologies -- 1.3.1.1 Electrodialysis -- 1.3.1.2 Reverse electrodialysis -- 1.3.1.3 Membrane capacitive deionization -- 1.3.1.4 Microbial fuel cell -- 1.3.1.5 Microbial desalination cell -- 1.3.2 Conductive membrane based electrochemical membrane technologies -- 1.3.2.1 Membrane fouling mitigation -- 1.3.2.2 Electrochemical membrane oxidation -- 1.3.2.3 Electrochemical membrane reduction -- 1.4 Conclusions and perspectives -- Acknowledgments -- References -- 2. Fundamentals of electrochemical membrane technology -- 2.1 Introduction -- 2.2 Electrokinetic ions/colloids -- 2.2.1 Electromigration -- 2.2.1.1 Ion electromigration -- 2.2.1.2 Electric mobility and migration number of ions -- 2.2.2 Electrophoresis -- 2.2.3 Electroosmosis -- 2.3 Ion transmembrane mass transfer -- 2.3.1 Nernst-Planck equation -- 2.3.2 Donnan effect -- 2.4 Electrical double layer on membrane surface -- 2.4.1 Electrical double layer structure.
|
505 |
8 |
|
|a 2.4.1.1 Formation mechanism and configuration of electrical double layer -- 2.4.1.2 Existing forms of ions -- 2.4.2 Electrical double layer model -- 2.4.2.1 Helmholtz model -- 2.4.2.2 Gouy-Chapman model -- 2.4.2.3 Gouy-Chapman-Stern model -- 2.4.2.4 Modified Donnan model -- 2.4.3 Regulation mechanism of electrical double layer on conductive membrane surface -- 2.5 Polarization of organic molecules -- 2.5.1 Polarity and dipole moment of molecules -- 2.5.2 Deformability and polarization of molecule -- 2.5.3 Molecular polarization in electrochemical membrane separation -- 2.6 Electrochemical reactions on electrode/membrane -- 2.6.1 Fundamentals of electrochemical reactions -- 2.6.2 Reactive species in electrochemical process -- 2.6.3 Membrane electrode process -- 2.7 Challenges and perspectives -- Acknowledgment -- References -- 3. Electrochemical membrane materials and modules -- 3.1 Introduction -- 3.2 Materials for conductive membranes -- 3.2.1 Polymer-based membrane materials -- 3.2.1.1 Composite membranes -- 3.2.1.2 Mixed matrix membranes -- 3.2.1.3 Summary of preparation methods -- 3.2.2 Metal and metal-oxide membrane materials -- 3.2.2.1 Metallic membrane -- 3.2.2.2 Metal oxide-metal composite membrane -- 3.2.2.3 Summary of preparation methods -- 3.2.3 Carbon-based membrane materials and MXene -- 3.2.3.1 Carbon nanotube-based membranes -- 3.2.3.2 Graphene-based membranes -- 3.2.3.3 MXene-based membranes -- 3.2.3.4 Summary of preparation methods -- 3.3 Materials for ion exchange membranes -- 3.3.1 Homogeneous ion exchange membranes -- 3.3.2 Heterogeneous ion exchange membranes -- 3.3.3 Pseudohomogeneous ion exchange membranes -- 3.3.4 Mixed matrix ion exchange membranes -- 3.4 Electrochemical membrane modules -- 3.5 Conclusions and perspectives -- Acknowledgment -- References.
|
505 |
8 |
|
|a 4. Electrified carbon nanotube membrane technology for water treatment -- 4.1 Introduction -- 4.2 Fabrication of electroactive membranes -- 4.3 Reactor configuration -- 4.4 Environmental applications of electrochemical CNT membranes -- 4.4.1 Degradation of organic contaminants -- 4.4.1.1 Direct electro-oxidation of contaminants -- 4.4.1.2 Indirect electro-oxidation of contaminants -- 4.4.1.2.1 Anodic OH-mediated decontamination -- 4.4.1.2.2 Active-chlorine-mediated decontamination -- 4.4.1.2.3 Electro-Fenton driven decontamination -- 4.4.1.3 Energy consumption -- 4.4.2 Decontamination of toxic inorganic contaminants -- 4.4.3 Construction of electroactive antifouling membranes -- 4.4.3.1 Antifouling membrane -- 4.4.3.2 Biofouling mitigation -- 4.4.4 Nanoconfinement effects in carbon nanotube-based membrane technologies -- 4.5 Conclusions and perspectives -- Acknowledgments -- References -- 5. Electrochemical membrane technology for disinfection -- 5.1 Introduction -- 5.2 Principal mechanisms of electrochemical membrane technology for disinfection -- 5.2.1 Principal mechanisms involved in the disinfection process to be achieved by electrochemical membranes -- 5.2.2 Direct oxidation -- 5.2.3 Indirect oxidation -- 5.2.4 Electroporation -- 5.2.5 Other mechanisms -- 5.2.6 Performance comparison of different disinfection mechanisms -- 5.2.6.1 Performance comparison of disinfection mechanisms based on shortest contact time -- 5.2.6.2 Performance comparison of different disinfection mechanisms based on EEO -- 5.3 Reactor configuration of electrochemical membrane for disinfection -- 5.3.1 Development progress of the reactor configuration -- 5.3.2 Stirred reactor applied in electrochemical membrane for disinfection -- 5.3.3 Flow-by reactor applied in electrochemical membrane for disinfection.
|
505 |
8 |
|
|a 5.3.4 Flow-through reactor applied in electrochemical membrane for disinfection -- 5.3.5 Evaluation and comparison of different configurations -- 5.4 Limitations and challenges of electrochemical membrane disinfection technology -- 5.5 Conclusions and perspectives -- Acknowledgment -- References -- 6. Electrochemical membrane bioreactors for wastewater treatment -- 6.1 Introduction -- 6.2 Pollutant removal -- 6.2.1 Removal of organic pollutants in the electrochemical membrane bioreactor -- 6.2.2 Removal of nitrogen in the electrochemical membrane bioreactor -- 6.2.3 Removal of phosphorus in the electrochemical membrane bioreactor -- 6.2.4 Removal of nonconventional pollutants in the electrochemical membrane bioreactor -- 6.2.4.1 Removal of phenols -- 6.2.4.2 Removal of trace organic pollutants -- 6.2.4.3 Removal of pathogenic viruses -- 6.3 Membrane fouling mitigation -- 6.3.1 Mechanisms of fouling mitigation -- 6.3.2 Mixed liquor properties and fouling in electrochemical membrane bioreactors -- 6.3.2.1 Concentration of fouling substances -- 6.3.2.2 Properties of sludge/foulant particles -- 6.4 Operating conditions, materials, and configurations -- 6.4.1 Current density and duration of application of electric field -- 6.4.2 Electrode materials -- 6.4.3 Configurations and membrane materials -- 6.5 Microbiological community -- 6.6 Energy consumption -- 6.7 Challenges and future prospects -- 6.8 Conclusions -- References -- 7. Electrochemical membrane technology for fouling control -- 7.1 Introduction -- 7.2 Understanding membrane fouling -- 7.2.1 Fouling and antifouling strategies -- 7.2.2 Classification of fouling according to the resistance-in-series model -- 7.2.3 Factors affecting fouling in electrochemical membrane technology -- 7.3 Electrochemical membrane materials -- 7.3.1 Nonelectroconductive membranes -- 7.3.2 Electroconductive membranes.
|
505 |
8 |
|
|a 7.3.2.1 Electroconductive polymeric membranes -- 7.3.2.2 Electroconductive carbon membranes -- 7.3.2.3 Electroconductive inorganic membranes -- 7.4 Electrochemical membrane process configurations -- 7.5 Electrochemical reactions -- 7.5.1 Electrophoresis -- 7.5.2 Electrocoagulation/electroflotation -- 7.5.3 Electrochemical oxidation -- 7.6 Electrical and electrochemical fouling control -- 7.6.1 Two-stage serial processes -- 7.6.2 Single-stage hybrid process -- 7.6.3 Electrochemical MBR -- 7.6.4 Bifunctional membrane process -- 7.6.4.1 Electrostatic repulsion and electrophoretic effects -- 7.6.4.2 Electrical/electrochemical inactivation of microorganisms -- 7.6.4.3 Bubble creation and electrolytic cleaning -- 7.6.5 Energy consumption for membrane fouling control -- 7.7 Concluding remarks and future research needs -- Acknowledgment -- References -- 8. Electrochemical membrane technology for environmental remediation -- 8.1 Introduction -- 8.2 Electrodialytic remediation -- 8.2.1 Fundamentals -- 8.2.2 Critical operating parameters and performance indicators -- 8.2.2.1 Current density and voltage drop -- 8.2.2.2 Remediation time -- 8.2.2.3 Liquid-solid ratio of the contaminated media and stirring -- 8.2.2.4 pH and water content -- 8.2.2.5 Contaminant speciation and removal -- 8.2.3 Mathematical simulation/modeling methods for electrodialytic remediation -- 8.2.3.1 Univariate linear regressions -- 8.2.3.2 Multiple linear regression and principal component regression -- 8.2.3.3 Projection to latent structures -- 8.2.4 Emerging applications of electrodialytic remediation -- 8.2.4.1 Use of flow electrodes in electrodialytic remediation -- 8.2.4.2 Electrodialytic processes for resource recovery and reactant delivery -- 8.3 Electrocatalytic remediation -- 8.3.1 Fundamentals -- 8.3.2 3D electrochemical system treating low ionic-strength water.
|
650 |
|
0 |
|a Sewage
|x Purification.
|
650 |
|
0 |
|a Membranes (Technology)
|
650 |
|
0 |
|a Electrochemistry.
|
650 |
|
2 |
|a Electrochemistry
|0 (DNLM)D004563
|
650 |
|
6 |
|a Eaux us�ees
|x �Epuration.
|0 (CaQQLa)201-0008737
|
650 |
|
6 |
|a Membranes (Technologie)
|0 (CaQQLa)201-0008740
|
650 |
|
6 |
|a �Electrochimie.
|0 (CaQQLa)201-0008432
|
650 |
|
7 |
|a Electrochemistry
|2 fast
|0 (OCoLC)fst00906371
|
650 |
|
7 |
|a Membranes (Technology)
|2 fast
|0 (OCoLC)fst01015871
|
650 |
|
7 |
|a Sewage
|x Purification
|2 fast
|0 (OCoLC)fst01113752
|
700 |
1 |
|
|a Wang, Zhiwei.
|
776 |
0 |
8 |
|c Original
|z 0128244704
|z 9780128244708
|w (OCoLC)1266896676
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128244708
|z Texto completo
|