MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_on1308798665
003 OCoLC
005 20231120010639.0
006 m o d
007 cr un|---aucuu
008 220402s2022 xx o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d EBLCP  |d OCLCO  |d OCLCF  |d N$T  |d MFS  |d UKMGB  |d UKAHL  |d OCLCQ  |d OG$  |d OCLCO 
015 |a GBC224961  |2 bnb 
016 7 |a 020490060  |2 Uk 
019 |a 1309047866  |a 1309049847  |a 1351462040 
020 |a 9780323906647  |q (electronic bk.) 
020 |a 0323906648  |q (electronic bk.) 
020 |z 9780323905480 
020 |z 032390548X 
035 |a (OCoLC)1308798665  |z (OCoLC)1309047866  |z (OCoLC)1309049847  |z (OCoLC)1351462040 
050 4 |a R858 
082 0 4 |a 610.285  |2 23 
245 0 0 |a 5G IoT and edge computing for smart healthcare  |h [electronic resource] /  |c edited by Akash Kumar Bhoi [and more]. 
260 |a [S.l.] :  |b Academic Press,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 0 |a Intelligent data centric systems 
505 2 |a Edge-IoMT-based enabled architecture for smart healthcare system -- Physical layer architecture of 5G enabled IoT/IoMT system -- HetNet/M2M/D2D communication in 5G technologies -- An overview of low power hardware architecture for edge computing devices -- Convergent network architecture of 5G and MEC -- An efficient lightweight speck technique for edge-IoT-based smart healthcare systems -- Deep learning approaches for the cardiovascular disease diagnosis using smartphone -- Advanced pattern recognition tools for disease diagnosis -- Brain-computer interface in Internet of Things environment -- Early detection of COVID-19 pneumonia based on ground-glass opacity (GGO) features of computerized tomography (CT) angiography -- Applications of wearable technologies in healthcare: an analytical study. 
505 0 |a Front Cover -- 5G IoT and Edge Computing for Smart Healthcare -- Copyright Page -- Contents -- List of contributors -- 1 Edge-IoMT-based enabled architecture for smart healthcare system -- 1.1 Introduction -- 1.2 Applications of an IoMT-based system in the healthcare industry -- 1.3 Application of edge computing in smart healthcare systems -- 1.4 Challenges of using edge computing with IoMT-based system in smart healthcare system -- 1.5 The framework for edge-IoMT-based smart healthcare system 
505 8 |a 1.6 Case study for the application of edge-IoMT-based systems enabled for the diagnosis of diabetes mellitus -- 1.6.1 Experimental results -- 1.7 Future prospects of edge computing for internet of medical things -- 1.8 Conclusions and future research directions -- References -- 2 Physical layer architecture of 5G enabled IoT/IoMT system -- 2.1 Architecture of IoT/IoMT system -- 2.1.1 Sensor layer -- 2.1.2 Gateway layer -- 2.1.3 Network layer -- 2.1.4 Visualization layer -- 2.2 Consideration of uplink healthcare IoT system relying on NOMA -- 2.2.1 Introduction -- 2.2.2 System model 
505 8 |a 2.2.3 Outage probability for UL NOMA -- 2.2.3.1 Outage probability of x1 -- 2.2.3.2 Outage probability of X2 -- 2.2.3.3 Asymptotic -- 2.2.4 Ergodic capacity of UL NOMA -- 2.2.5 Numerical results and discussions -- 2.3 Conclusions -- References -- 3 HetNet/M2M/D2D communication in 5G technologies -- 3.1 Introduction -- 3.2 Heterogenous networks in the era of 5G -- 3.2.1 5G mobile communication standards and enhanced features -- 3.2.2 5G heterogeneous network architecture -- 3.2.3 Intelligent software defined network framework of 5G HetNets -- 3.2.4 Next-Gen 5G wireless network 
505 8 |a 3.2.5 Internet of Things toward 5G and heterogenous wireless networks -- 3.2.6 5G-HetNet H-CRAN fronthaul and TWDM-PON backhaul: QoS-aware virtualization for resource management -- 3.2.7 Spectrum allocation and user association in 5G HetNet mmWave communication: a coordinated framework -- 3.2.8 Diverse service provisioning in 5G and beyond: an intelligent self-sustained radio access network slicing framework -- 3.3 Device-to-Device communication in 5G HetNets -- 3.4 Machine-to-Machine communication in 5G HetNets 
505 8 |a 3.4.1 Machine-to-Machine communication in 5G: state of the art architecture, recent advances and challenges -- 3.4.2 Recent advancement in the Internet of Things related standard: oneM2M perspective -- 3.4.2.1 Advantages of oneM2M -- 3.4.2.2 OneM2M protocols -- 3.4.2.3 OneM2M standard platform: a unified common service-oriented communication framework -- 3.4.3 M2M traffic in 5G HetNets -- 3.4.4 Distributed gateway selection for M2M communication cognitive 5G5G networks -- 3.4.5 Algorithm for clusterization, aggregation, and prioritization of M2M devices in 5G5G HetNets 
650 0 |a Medical informatics. 
650 0 |a Artificial intelligence  |x Medical applications. 
650 0 |a 5G mobile communication systems. 
650 0 |a Edge computing. 
650 0 |a Internet of things. 
650 6 |a M�edecine  |x Informatique.  |0 (CaQQLa)201-0103112 
650 6 |a Intelligence artificielle en m�edecine.  |0 (CaQQLa)201-0180593 
650 6 |a Communications mobiles 5G.  |0 (CaQQLa)000313210 
650 6 |a Internet des objets.  |0 (CaQQLa)000269177 
650 7 |a 5G mobile communication systems  |2 fast  |0 (OCoLC)fst02009233 
650 7 |a Artificial intelligence  |x Medical applications  |2 fast  |0 (OCoLC)fst00817267 
650 7 |a Edge computing  |2 fast  |0 (OCoLC)fst02020291 
650 7 |a Internet of things  |2 fast  |0 (OCoLC)fst01894151 
650 7 |a Medical informatics  |2 fast  |0 (OCoLC)fst01014175 
700 1 |a Bhoi, Akash Kumar. 
776 0 8 |i Print version:  |z 032390548X  |z 9780323905480  |w (OCoLC)1268112824 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323905480  |z Texto completo