Machine learning for planetary science /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Machine Learning for Planetary Science
- Copyright
- Contents
- Contributors
- Foreword
- References
- 1 Introduction to machine learning
- 1.1 Overview of machine learning methods
- 1.2 Supervised learning
- 1.2.1 Classification
- 1.2.2 Regression
- 1.3 Unsupervised learning
- 1.3.1 Clustering
- 1.3.2 Dimensionality reduction
- 1.4 Semisupervised learning
- 1.4.1 Self-training
- 1.4.2 Self-training with Expectation Maximization
- 1.4.3 Cotraining
- 1.5 Active learning
- 1.5.1 Uncertainty sampling
- 1.5.2 Query-by-committee
- 1.6 Popular machine learning methods
- 1.6.1 Principal component analysis
- 1.6.2 K-means clustering
- 1.6.3 Support vector machines
- 1.6.4 Decision trees and random forests
- 1.6.5 Neural networks
- 1.7 Data set preparation
- References
- 2 The new and unique challenges of planetary missions
- 2.1 Introduction
- 2.1.1 50 years of Mercury exploration
- 2.1.2 Challenges of large and complex data return
- 2.1.3 Facing the unknown
- 2.1.4 Machine learning for planetary science
- References
- 3 Finding and reading planetary data
- 3.1 Data acquisition in planetary science
- 3.1.1 Introduction
- 3.1.2 Data processing levels
- 3.1.3 PDS
- 3.1.3.1 Organizational structure within a node
- Releases and volumes
- EDR and RDR
- PDS4 collections and bundles
- 3.1.4 ESA's Planetary Science Archive
- 3.1.5 Reading data with Python
- 3.1.5.1 Example reading of PDS3 data
- 3.1.5.2 Troubleshooting data reading
- 3.1.6 Spaces to watch
- 3.1.6.1 PDR
- 3.1.6.2 PlanetaryPy
- 3.1.6.3 OpenPlanetary
- 4 Introduction to the Python Hyperspectral Analysis Tool (PyHAT)
- 4.1 Introduction
- 4.2 PyHAT library architecture
- 4.3 PyHAT orbital
- 4.3.1 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
- 4.3.2 Moon Mineralogy Mapper (M3)
- 4.3.3 Kaguya Spectral Profiler
- 4.4 PyHAT in-situ
- 4.4.1 Baseline removal example
- 4.4.2 Regression analysis example
- 4.4.3 Data exploration example
- 4.4.4 Calibration transfer
- 4.5 Conclusion
- Acronyms
- Acknowledgments
- References
- 5 Tutorial: how to access, process, and label PDS image data for machine learning
- 5.1 Introduction
- 5.2 Access to PDS data products
- 5.2.1 PDS Image Atlas
- 5.2.2 PDS Imaging Node Data Portal
- 5.3 Preprocessing PDS data products into standard image formats
- 5.3.1 PDS image data products
- 5.3.2 PDS browse images
- 5.3.3 Converting PDS image data products
- 5.4 Labeling image data
- 5.4.1 Publicly available labeled image data sets
- 5.4.2 Tools for labeling image data
- 5.5 Example PDS image classifier results
- 5.5.1 Train, validation, and test sets
- 5.5.2 Model fine-tuning
- 5.5.3 Model calibration and performance
- 5.5.4 Access to HiRISENet classification results
- 5.6 Summary
- Acknowledgments
- References