Cargando…

Machine learning for planetary science /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Helbert, Joern (Editor ), D'Amore, Mario (Editor ), Aye, Michael (Editor ), Kerner, Hannah (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_on1305912625
003 OCoLC
005 20231120010638.0
006 m o d
007 cr |n|||||||||
008 220326t20222022ne a ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d OPELS  |d OCLCO  |d EBLCP  |d AFU  |d N$T  |d OCLCF  |d SFB  |d OSU  |d OCLCQ  |d OCLCO 
019 |a 1305438600  |a 1306021844 
020 |a 9780128187227  |q (electronic bk.) 
020 |a 0128187220  |q (electronic bk.) 
020 |z 9780128187210  |q (print) 
020 |z 0128187212  |q (print) 
035 |a (OCoLC)1305912625  |z (OCoLC)1305438600  |z (OCoLC)1306021844 
050 4 |a QB602.95  |b .M33 2022 
082 0 4 |a 523.20285631  |2 23 
245 0 0 |a Machine learning for planetary science /  |c edited by Joern Helbert, Mario D'Amore, Michael Aye, Hannah Kerner. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2022. 
264 4 |c �2022 
300 |a 1 online resource (xvi, 216 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover -- Machine Learning for Planetary Science -- Copyright -- Contents -- Contributors -- Foreword -- References -- 1 Introduction to machine learning -- 1.1 Overview of machine learning methods -- 1.2 Supervised learning -- 1.2.1 Classification -- 1.2.2 Regression -- 1.3 Unsupervised learning -- 1.3.1 Clustering -- 1.3.2 Dimensionality reduction -- 1.4 Semisupervised learning -- 1.4.1 Self-training -- 1.4.2 Self-training with Expectation Maximization -- 1.4.3 Cotraining -- 1.5 Active learning -- 1.5.1 Uncertainty sampling -- 1.5.2 Query-by-committee 
505 8 |a 1.6 Popular machine learning methods -- 1.6.1 Principal component analysis -- 1.6.2 K-means clustering -- 1.6.3 Support vector machines -- 1.6.4 Decision trees and random forests -- 1.6.5 Neural networks -- 1.7 Data set preparation -- References -- 2 The new and unique challenges of planetary missions -- 2.1 Introduction -- 2.1.1 50 years of Mercury exploration -- 2.1.2 Challenges of large and complex data return -- 2.1.3 Facing the unknown -- 2.1.4 Machine learning for planetary science -- References -- 3 Finding and reading planetary data -- 3.1 Data acquisition in planetary science 
505 8 |a 3.1.1 Introduction -- 3.1.2 Data processing levels -- 3.1.3 PDS -- 3.1.3.1 Organizational structure within a node -- Releases and volumes -- EDR and RDR -- PDS4 collections and bundles -- 3.1.4 ESA's Planetary Science Archive -- 3.1.5 Reading data with Python -- 3.1.5.1 Example reading of PDS3 data -- 3.1.5.2 Troubleshooting data reading -- 3.1.6 Spaces to watch -- 3.1.6.1 PDR -- 3.1.6.2 PlanetaryPy -- 3.1.6.3 OpenPlanetary -- 4 Introduction to the Python Hyperspectral Analysis Tool (PyHAT) -- 4.1 Introduction -- 4.2 PyHAT library architecture -- 4.3 PyHAT orbital 
505 8 |a 4.3.1 Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) -- 4.3.2 Moon Mineralogy Mapper (M3) -- 4.3.3 Kaguya Spectral Profiler -- 4.4 PyHAT in-situ -- 4.4.1 Baseline removal example -- 4.4.2 Regression analysis example -- 4.4.3 Data exploration example -- 4.4.4 Calibration transfer -- 4.5 Conclusion -- Acronyms -- Acknowledgments -- References -- 5 Tutorial: how to access, process, and label PDS image data for machine learning -- 5.1 Introduction -- 5.2 Access to PDS data products -- 5.2.1 PDS Image Atlas -- 5.2.2 PDS Imaging Node Data Portal 
505 8 |a 5.3 Preprocessing PDS data products into standard image formats -- 5.3.1 PDS image data products -- 5.3.2 PDS browse images -- 5.3.3 Converting PDS image data products -- 5.4 Labeling image data -- 5.4.1 Publicly available labeled image data sets -- 5.4.2 Tools for labeling image data -- 5.5 Example PDS image classifier results -- 5.5.1 Train, validation, and test sets -- 5.5.2 Model fine-tuning -- 5.5.3 Model calibration and performance -- 5.5.4 Access to HiRISENet classification results -- 5.6 Summary -- Acknowledgments -- References 
650 0 |a Planetary science  |x Data processing. 
650 0 |a Machine learning. 
650 6 |a Plan�etologie  |0 (CaQQLa)201-0138968  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a Apprentissage automatique.  |0 (CaQQLa)201-0131435 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
700 1 |a Helbert, Joern,  |e editor. 
700 1 |a D'Amore, Mario,  |e editor. 
700 1 |a Aye, Michael,  |e editor. 
700 1 |a Kerner, Hannah,  |e editor. 
776 0 8 |i Print version:  |z 0128187212  |z 9780128187210  |w (OCoLC)1144876456 
776 0 8 |i Print version:  |t Machine learning for planetary science  |z 9780128187210  |w (OCoLC)1285702618 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128187210  |z Texto completo