Cargando…

Renewable polymers and polymer-metal oxide composites : synthesis, properties, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Haider, Sajjad (College teacher) (Editor ), Haider, Adnan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Colección:Metal oxides series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications
  • Copyright
  • Contents
  • Contributors
  • Editors biographies
  • Series editor biography
  • Preface to the series
  • Chapter 1: Composite materials: Concept, recent advancements, and applications
  • 1. Introduction
  • 1.1. Composites
  • 1.1.1. Metal matrix composites (MMCs)
  • 1.1.2. Polymer matrix composites (PMCs)
  • 1.1.3. Ceramic matrix composites (CMCs)
  • 1.1.4. Reinforcement of composites
  • 1.2. The rule of mixture
  • 1.3. Renewable polymers for metal oxide-reinforced composites
  • 2. Experimental characterization of composites
  • 2.1. Chemical properties
  • 2.2. Thermal properties
  • 2.3. Optical properties
  • 2.4. Biochemical properties
  • 2.5. Electrical properties
  • 2.6. Thermomechanical properties
  • 3. Structural analysis of composites
  • 3.1. Scanning electron microscopy (SEM)
  • 3.2. Transmission electron microscopy (TEM)
  • 3.3. Scanning tunneling microscopy (STM)
  • 3.4. Atomic force microscopy (AFM)
  • 3.5. Optical coherence tomography (OCT)
  • 3.6. X-ray studies
  • 4. Mechanical properties of composites
  • 4.1. Strength
  • 4.2. Modulus
  • 4.3. Hardness and wear resistance
  • 4.4. Fatigue
  • 5. Metal matrix composites
  • 5.1. Materials for MMCs
  • 5.2. Consolidation and shaping of MMCs
  • 5.3. Advantages and disadvantages of MMCs over PMCs
  • 5.3.1. Advantages of MMCs over PMCs
  • 5.3.2. Disadvantages of MMCs over PMCs
  • 5.4. Application of MMCs
  • 6. Isotropic vs. anisotropic material properties
  • 7. Composites modeling
  • 7.1. Analytical models
  • 7.1.1. ROM and Voigt-Reuss bounds
  • 7.1.2. Hashin-Shtrikman model
  • 7.1.3. Halpin-Tsai model
  • 7.1.4. Hui-Shia model
  • 7.2. Numerical models
  • 7.2.1. Molecular dynamic model
  • 7.2.2. Finite element model (FEM)
  • RVE model
  • Unit cell model
  • Object-oriented model
  • 8. Application of metal oxide-reinforced renewable polymer composites
  • 9. Future aspects and conclusion
  • References
  • Chapter 2: Manganese oxides/polyaniline composites as electrocatalysts for oxygen reduction
  • 1. Introduction
  • 2. Fundamentals of electrochemical ORR
  • 2.1. Mechanism
  • 2.2. Thermodynamics and kinetics
  • 3. Electrocatalysts for ORR
  • 4. Synthesis of MnxOy/PAni composites
  • 4.1. MnxOy
  • 4.2. PAni
  • 4.3. MnxOy/PAni composites
  • 5. Electrocatalytic activity of MnxOy/PAni composites toward ORR
  • 5.1. MnO2/PAni composite
  • 5.2. MnxOy/PAni hybrid shells
  • 5.3. Effect of microstates of MnO2 on ORR
  • 6. Concluding remarks and future prospects
  • References
  • Chapter 3: Traditional and recently advanced synthetic routes of the metal oxide materials
  • 1. Introduction
  • 2. Metal oxide materials
  • 3. Historical background
  • 4. Prospective advancement in the synthesis
  • 4.1. A brief history of the hydrothermal/solvothermal technique
  • 5. Novel solution routes
  • 5.1. Soft solution processing
  • 5.1.1. Hydrothermal