Renewable polymers and polymer-metal oxide composites : synthesis, properties, and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2022.
|
Colección: | Metal oxides series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Renewable Polymers and Polymer-Metal Oxide Composites: Synthesis, Properties, and Applications
- Copyright
- Contents
- Contributors
- Editors biographies
- Series editor biography
- Preface to the series
- Chapter 1: Composite materials: Concept, recent advancements, and applications
- 1. Introduction
- 1.1. Composites
- 1.1.1. Metal matrix composites (MMCs)
- 1.1.2. Polymer matrix composites (PMCs)
- 1.1.3. Ceramic matrix composites (CMCs)
- 1.1.4. Reinforcement of composites
- 1.2. The rule of mixture
- 1.3. Renewable polymers for metal oxide-reinforced composites
- 2. Experimental characterization of composites
- 2.1. Chemical properties
- 2.2. Thermal properties
- 2.3. Optical properties
- 2.4. Biochemical properties
- 2.5. Electrical properties
- 2.6. Thermomechanical properties
- 3. Structural analysis of composites
- 3.1. Scanning electron microscopy (SEM)
- 3.2. Transmission electron microscopy (TEM)
- 3.3. Scanning tunneling microscopy (STM)
- 3.4. Atomic force microscopy (AFM)
- 3.5. Optical coherence tomography (OCT)
- 3.6. X-ray studies
- 4. Mechanical properties of composites
- 4.1. Strength
- 4.2. Modulus
- 4.3. Hardness and wear resistance
- 4.4. Fatigue
- 5. Metal matrix composites
- 5.1. Materials for MMCs
- 5.2. Consolidation and shaping of MMCs
- 5.3. Advantages and disadvantages of MMCs over PMCs
- 5.3.1. Advantages of MMCs over PMCs
- 5.3.2. Disadvantages of MMCs over PMCs
- 5.4. Application of MMCs
- 6. Isotropic vs. anisotropic material properties
- 7. Composites modeling
- 7.1. Analytical models
- 7.1.1. ROM and Voigt-Reuss bounds
- 7.1.2. Hashin-Shtrikman model
- 7.1.3. Halpin-Tsai model
- 7.1.4. Hui-Shia model
- 7.2. Numerical models
- 7.2.1. Molecular dynamic model
- 7.2.2. Finite element model (FEM)
- RVE model
- Unit cell model
- Object-oriented model
- 8. Application of metal oxide-reinforced renewable polymer composites
- 9. Future aspects and conclusion
- References
- Chapter 2: Manganese oxides/polyaniline composites as electrocatalysts for oxygen reduction
- 1. Introduction
- 2. Fundamentals of electrochemical ORR
- 2.1. Mechanism
- 2.2. Thermodynamics and kinetics
- 3. Electrocatalysts for ORR
- 4. Synthesis of MnxOy/PAni composites
- 4.1. MnxOy
- 4.2. PAni
- 4.3. MnxOy/PAni composites
- 5. Electrocatalytic activity of MnxOy/PAni composites toward ORR
- 5.1. MnO2/PAni composite
- 5.2. MnxOy/PAni hybrid shells
- 5.3. Effect of microstates of MnO2 on ORR
- 6. Concluding remarks and future prospects
- References
- Chapter 3: Traditional and recently advanced synthetic routes of the metal oxide materials
- 1. Introduction
- 2. Metal oxide materials
- 3. Historical background
- 4. Prospective advancement in the synthesis
- 4.1. A brief history of the hydrothermal/solvothermal technique
- 5. Novel solution routes
- 5.1. Soft solution processing
- 5.1.1. Hydrothermal