Cargando…

Biomimicry for aerospace technologies and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shyam, Vikram, Eggermont, Marjan, Hepp, Aloysius F.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • BIOMIMICRY FOR AEROSPACE
  • BIOMIMICRY FOR AEROSPACE Technologies and Applications
  • Copyright
  • Contents
  • Contributors
  • Preface
  • 1
  • Biomimicry in aerospace: Education, design and inspiration
  • One
  • Biomimicry and biodesign for innovation in future space colonization
  • 1.1 Introduction
  • 1.2 The entrepreneurial space industry
  • 1.2.1 The entrepreneurial space industry urgently needs design
  • 1.2.2 Habitability, static environments, and the need to create ad hoc solutions
  • 1.2.3 Additive and in situ manufacturing in aerospace: Needs and implications
  • 1.2.4 Next steps toward biodesign in space colonization
  • 1.3 From biomimicry and bio-inspired design to bio-enhanced and biohybrid design, technology, and innovation
  • 1.3.1 Next Nature, Material Ecology, and Biodesign
  • 1.3.1.1 Next Nature
  • 1.3.1.2 Material Ecology
  • 1.3.1.3 Biodesign
  • 1.3.2 Hybrid approaches to nature, culture, and emerging technologies for aerospace
  • 1.3.3 Other considerations and potential future implications
  • 1.4 Applied research into biomimetic and algorithmic design
  • 1.4.1 How algorithmic design is enhancing the biomimetic approach
  • 1.4.2 Behavioral protocols: using inner and outer forces
  • 1.4.3 Behavioral protocols: Absorbing the context
  • 1.4.4 Bio-affected protocols and in situ manufacturing technologies: A potential for future planetary colonization
  • 1.5 Bio-inspired, bio-enhanced, and biohybrid engineering: Speculative design concepts for space colonization
  • 1.6 Current research in the Dubai Institute of Design and Innovation: Case studies with undergraduate students
  • 1.6.1 Case study one: "Cryo-Slug"
  • 1.6.2 Case study two: "Growing Materials"
  • 1.7 Conclusions
  • Acknowledgments
  • References
  • TWO
  • A bio-inspired design and space challenges cornerstone project
  • 2.1 Introduction
  • 2.2 NASA challenges.
  • 2.3 Ask Nature strategy research
  • 2.4 Challenges and strategies diagrams
  • 2.5 Strategies illustration
  • 2.6 Designing and drawing the bio-inspired design solution
  • 2.7 Data analysis
  • 2.8 Conclusion
  • Acknowledgments
  • References
  • THREE
  • Toward systematic nature-inspired problem-solving for aerospace applications and beyond
  • 3.1 Introduction
  • 3.2 Biomimicry tool landscape
  • 3.3 Virtual interchange for Nature-inspired Exploration: 2019 Biocene Tools Workshop
  • 3.3.1 Purpose of the Biocene Tools Workshop
  • 3.3.2 Workshop objectives and activities
  • 3.3.3 Biocene meeting output
  • 3.3.4 Biocene meeting results
  • 3.4 Analysis and discussion
  • 3.5 Conclusions and future directions
  • Acknowledgments
  • References
  • Four
  • Parallels in communication technology and natural phenomena
  • 4.1 Introduction
  • 4.2 The Schmitt Trigger: Biomimetics and synchronicity
  • 4.3 Sense and avoid: Collective motion in bird flocks and aircraft formations
  • 4.4 Periodic structures: Crystals and electronic filters
  • 4.5 Charles Darwin: Butterflies, genetic algorithms and microwave antennas
  • 4.6 Color and light: Butterflies and dichroic mirrors
  • 4.7 Smart materials: Artificial muscles and antennas
  • 4.8 Whispers: Cathedrals and virus detectors
  • 4.9 Spookiness: Quantum entanglement and advanced cryptography
  • 4.10 Noise: Communications
  • 4.11 Summary and conclusions
  • References
  • Five
  • Atacama Desert: Genius of place
  • 5.1 Atacama Desert
  • 5.1.1 Atacama aridity
  • 5.1.2 Natural history of Atacama Desert
  • 5.1.3 Operating conditions
  • 5.1.4 Biogeochemical cycles in the Atacama Desert
  • 5.1.4.1 Carbon cycle
  • 5.1.4.2 Nitrogen cycle
  • 5.1.4.3 Iodine cycle
  • 5.2 Strategies adopted by species to survive in the Atacama Desert
  • 5.2.1 Llareta (Azorella compacta)
  • 5.2.1.1 Llareta biological strategy-adaptation.
  • 5.2.1.2 Llareta design principles
  • 5.2.1.3 Llareta application ideas
  • 5.2.1.4 Llareta further design considerations
  • 5.2.2 Desert Holly (Atriplex atacamensis)
  • 5.2.2.1 Desert holly biological strategy-adaptation
  • 5.2.2.2 Desert holly design principles
  • 5.2.2.3 Desert holly application ideas
  • 5.2.3 Tamarugo (Prosopis tamarugo)
  • 5.2.3.1 Tamarugo biological strategy-adaptation
  • 5.2.3.2 Tamarugo design principles
  • 5.2.3.3 Tamarugo application ideas
  • 5.2.4 Desert saltgrass (Distichlis spicata)
  • 5.2.4.1 Desert saltgrass biological strategy-adaptation
  • 5.2.4.2 Desert saltgrass design principles
  • 5.2.4.3 Desert saltgrass application ideas
  • 5.2.5 Vic�ua (Vicugna vicugna)
  • 5.2.5.1 Vic�ua biological strategy-adaptation
  • 5.2.5.2 Vic�ua design principles
  • 5.2.5.3 Vic�ua application ideas
  • 5.2.5.4 Vic�ua further design considerations
  • 5.2.6 Guanaco (Lama guanicoe)
  • 5.2.6.1 Guanaco biological strategy-adaptation
  • 5.2.6.2 Guanaco design principles
  • 5.2.6.3 Guanaco application ideas
  • 5.3 Discussion
  • 5.4 Conclusions
  • References
  • 2
  • Bio-inspired design: Aerospace and other practical applications
  • SIX
  • Bio-inspired design and additive manufacturing of cellular materials
  • 6.1 Introduction
  • 6.1.1 Cellular materials
  • 6.1.2 Additive manufacturing
  • 6.1.3 Bio-inspired design
  • 6.2 Cellular materials design
  • 6.2.1 Cell selection
  • 6.2.2 Cell size distribution
  • 6.2.3 Cell parameters
  • 6.2.4 Integration
  • 6.3 Cellular materials in nature
  • 6.3.1 Unit cell selection
  • 6.3.1.1 Tessellation
  • 6.3.1.2 Elements
  • 6.3.1.3 Connectivity
  • 6.3.2 Cell size distribution
  • 6.3.3 Cell parameter optimization
  • 6.3.4 Integration
  • 6.4 Additive manufacturing design constraints
  • 6.4.1 Feature resolution and fidelity
  • 6.4.2 Dimensional accuracy
  • 6.4.3 Scale dependence
  • 6.4.4 Orientation dependence.
  • 6.5 Toward a methodology: Honeycomb panel case study
  • 6.5.1 Morphology
  • 6.5.2 Design
  • 6.5.3 Validation
  • 6.6 Summary
  • References
  • Seven
  • Biomimetic course design exploration for improved NASA zero gravity exercise equipment
  • 7.1 Introduction
  • 7.2 University of Akron biomimicry course: Response to NASA design challenge
  • 7.2.1 Course framework
  • 7.2.2 Background of NASA's design challenge
  • 7.2.3 Problem description
  • 7.3 Biomimetic improvements to the exercise device box and accessories
  • 7.3.1 Selection of biological role models
  • 7.3.2 Foldable structures for improved functionality
  • 7.3.2.1 Deployable honeycomb sandwich structures
  • 7.3.2.2 Unfolding pattern of beach leaves
  • 7.3.2.3 Mechanics of the primary feathers of pigeon wings
  • 7.3.2.4 Alternative design suggestions
  • 7.3.3 Hook and loop fastener shoes for increased exercise adhesion
  • 7.3.4 Exercise program
  • 7.4 Biomimetic improvements to ropes and cables
  • 7.4.1 Biological model refinement
  • 7.4.2 Fish fin-inspired modular rope design
  • 7.4.3 Hierarchical structuring of ropes
  • 7.4.4 Sandfish-inspired abrasion reduction of ropes
  • 7.4.5 Pulley lubrication using electroosmosis
  • 7.5 Conclusions and future work
  • Acknowledgments
  • References
  • Eight
  • Biomimetics of boxfish: Designing an aerodynamically efficient passenger car
  • 8.1 Introduction
  • 8.2 Methodology
  • 8.2.1 Biomimetic design process
  • 8.2.2 Aerodynamics of a yellow boxfish
  • 8.2.2.1 Simplified boxfish model
  • 8.2.2.2 Wind tunnel study
  • 8.2.3 Biomimetic design of a one-box type car
  • 8.2.4 Numerical study
  • 8.2.4.1 Computational domain
  • 8.2.4.2 Meshing
  • 8.2.4.3 Boundary conditions and solver setup
  • 8.3 Results and discussion
  • 8.3.1 Boxfish aerodynamics
  • 8.3.2 Aerodynamics of the biomimetic car
  • 8.3.3 Computational fluid dynamics comparison study.
  • 8.3.3.1 Pressure distribution
  • 8.3.3.2 Pressure contour
  • 8.3.3.3 Velocity contour
  • 8.3.3.4 Streamlines
  • 8.4 Conclusions
  • References
  • Nine
  • Thresholds of nature: How understanding one of nature's penultimate laws led to the PowerCone, a biomimetic ...
  • 9.1 Background-thresholds abound
  • 9.1.1 The generalized Navier-Stokes equation
  • 9.2 The moment of inspiration
  • 9.3 Maple key aerodynamics
  • 9.4 The first prototypes
  • 9.5 Wind tunnel testing a PowerCone
  • 9.6 Time-Dependent Energy Transfer and thresholds
  • 9.7 Changing fluids: Tidal testing a PowerCone
  • 9.8 New computational frontiers: PowerCone
  • 9.9 Conclusion: Full-Scale Testing
  • References
  • 3
  • Biomimicry and foundational aerospace disciplines
  • Ten
  • Slithering across worlds-snake-inspired robots for extraterrestrial exploration
  • 10.1 Bio-inspired design
  • 10.2 Identifying the problem-traversing other worlds
  • 10.3 Searching planetary analogs for a natural model
  • 10.4 Snake locomotion-turning obstacles into advantages
  • 10.4.1 Lateral undulation
  • 10.4.2 Sidewinding
  • 10.4.3 Concertina
  • 10.4.4 Rectilinear
  • 10.4.5 More than four modes
  • 10.4.6 Unknowns
  • 10.5 Replicating snakes' success-bio-inspired snake robots
  • 10.6 Applications and mission profiles
  • 10.7 Conclusion: Bio-inspired snake robots for extraterrestrial exploration
  • References
  • Eleven
  • Biomimetic advances in photovoltaics with potential aerospace applications
  • 11.1 Introduction
  • 11.2 Solar applications in aerospace
  • 11.2.1 Background and short history
  • 11.2.2 Solar cell figures of merit
  • 11.2.3 Unique issues for space solar cells
  • 11.3 Classes of solar cells
  • 11.3.1 Conventional solar cells
  • 11.3.2 Excitonic solar cells
  • 11.3.3 Majority versus minority carrier devices
  • 11.4 Losses in solar cells
  • 11.4.1 Intrinsic losses
  • 11.4.2 Extrinsic losses.