Cargando…

3D bioprinting and nanotechnology in tissue engineering and regenerative medicine /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zhang, Lijie Grace (Editor ), Fisher, John P. (Editor ), Leong, Kam W. (Professor of biomedical engineering) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2022.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_on1299143209
003 OCoLC
005 20231120010634.0
006 m o d
007 cr |n|||||||||
008 220224s2022 enk ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GZM  |d OPELS  |d OCLCO  |d OCLCF  |d UKMGB  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBC256668  |2 bnb 
016 7 |a 020528559  |2 Uk 
019 |a 1298852120  |a 1298881364  |a 1298936468 
020 |a 9780128245538  |q (electronic bk.) 
020 |a 0128245530  |q (electronic bk.) 
020 |z 9780128245521 
020 |z 0128245522 
035 |a (OCoLC)1299143209  |z (OCoLC)1298852120  |z (OCoLC)1298881364  |z (OCoLC)1298936468 
050 4 |a R857.T55 
072 7 |a MED  |x 108000  |2 bisacsh 
072 7 |a SCI  |x 010000  |2 bisacsh 
072 7 |a MED  |x 009000  |2 bisacsh 
072 7 |a TCB  |2 bicssc 
072 7 |a MBG  |2 bicssc 
082 0 4 |a 616.02/7  |2 23 
245 0 0 |a 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine /  |c edited by Lijie Grace Zhang, John P. Fisher, Kam W. Leong. 
250 |a Second edition. 
264 1 |a London :  |b Academic Press,  |c 2022. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover -- 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine -- Copyright Page -- Contents -- List of contributors -- Preface -- I. Principles -- 1 Nanotechnology: A Toolkit for Cell Behavior -- 1.1 INTRODUCTION -- 1.2 NANOBIOMATERIALS FOR TISSUE REGENERATION -- 1.2.1 CARBON NANOBIOMATERIALS -- 1.2.1.1 Carbon Nanotubes -- 1.2.1.2 Carbon Nanofibers -- 1.2.1.3 Graphene -- 1.2.2 SELF-ASSEMBLING NANOBIOMATERIALS -- 1.2.2.1 Self-Assembling Nanotubes -- 1.2.2.2 Self-Assembling Nanofibers -- 1.2.3 POLYMERIC AND CERAMIC NANOBIOMATERIALS -- 1.2.3.1 Polymeric Nanobiomaterials -- 1.2.3.2 Ceramic Nanobiomaterials and Ceramic-Polymer Nanocomposites -- 1.3 3D NANO/MICROFABRICATION TECHNOLOGY FOR TISSUE REGENERATION -- 1.3.1 3D NANOFIBROUS AND NANOPOROUS SCAFFOLDS FOR TISSUE REGENERATION -- 1.3.1.1 Electrospun Nanofibrous Scaffolds for Tissue Regeneration -- 1.3.1.2 Other 3D Nanofibrous/Nanoporous Scaffolds for Tissue Regeneration -- 1.3.2 3D PRINTING OF NANOMATERIAL SCAFFOLDS FOR TISSUE REGENERATION -- 1.3.2.1 3D Printing Techniques for Tissue Regeneration -- 1.3.2.2 3D Printing of Nanomaterial Scaffolds for Tissue Regeneration -- 1.4 CONCLUSION AND FUTURE DIRECTIONS -- Acknowledgments -- Questions -- References -- 2 Bioprinting of Biomimetic Tissue Models for Disease Modeling and Drug Screening -- 2.1 Introduction -- 2.2 Current 3D Bioprinting Approaches to Build Biomimetic Tissue Models -- 2.2.1 Current 3D Bioprinting Technology -- 2.2.1.1 Inkjet-Based Bioprinting -- 2.2.1.2 Extrusion-Based Bioprinting -- 2.2.1.3 Light-Based Bioprinting -- 2.2.1.3.1 TPP-Based Bioprinting -- 2.2.1.3.2 DLP-Based Bioprinting -- 2.2.2 Cell Source and Preparation -- 2.2.3 Biomaterial Choice -- 2.3 Drug Screening and Disease Modeling Applications in Various Organs -- 2.3.1 Liver Models -- 2.3.2 Cardiac and Skeletal Muscle Models. 
505 8 |a 2.3.2.1 Cardiac Muscle -- 2.3.2.2 Skeletal Muscle Models -- 2.3.3 Cancer Models -- 2.4 Challenges and Future Outlook -- Acknowledgments -- Declaration of Interests -- References -- 3 3D BIOPRINTING TECHNIQUES -- 3.1 Introduction -- 3.2 Definition and Principles of 3D Bioprinting -- 3.3 3D Bioprinting Technologies -- 3.3.1 Ink-Jet-Based Bioprinting -- 3.3.2 Pressure-Assisted Bioprinting -- 3.3.3 Laser-Assisted Bioprinting -- 3.3.4 Solenoid Valve-Based Printing -- 3.3.5 Acoustic-Jet Printing -- 3.4 Challenges and Future Development of 3D Bioprinting -- 3.5 Conclusion -- References -- 4 The Power of CAD/CAM Laser Bioprinting at the Single-Cell Level: Evolution of Printing -- 4.1 Introduction -- 4.1.1 Direct Contact Versus Direct Write for Single-Cell Printing -- 4.2 Basics of Laser-Assisted Printing: Overview of Systems and Critical Ancillary Materials -- 4.2.1 Laser-Assisted Cell Transfer System Components -- 4.2.2 Absorbing Film-Assisted Laser-Induced Forward Transfer -- 4.2.3 Matrix-Assisted Pulsed-Laser Evaporation Direct Write -- 4.2.4 Ancillary Materials -- 4.3 Matrix-Assisted Pulsed-Laser Evaporation Direct-Write Mechanistics -- 4.3.1 Modeling Cellular Droplet Formation -- 4.3.1.1 Modeling Bubble Formation-Induced Process Information -- 4.3.1.2 Modeling Laser-Matter Interaction Induced Thermoelastic Stress -- 4.3.2 Modeling of Droplet Landing Process -- 4.4 Postprocessing Cell Viability and Function -- 4.5 Case Studies and Applications Illustrating the Importance of Single-Cell Deposition -- 4.5.1 Isolated-Node, Single-Cell Arrays -- 4.5.2 Network-Level, Single-Cell Arrays -- 4.5.3 Next-Generation Single-Cell Arrays: Integrated, Computation-Driven Analysis -- 4.5.4 Example of Single-Cell Array via Matrix-Assisted Pulsed-Laser Evaporation Direct Write -- 4.5.5 Laser Direct Write for Neurons -- 4.5.5.1 Neural Development. 
505 8 |a 4.5.5.2 Engineered Circuits -- 4.5.5.3 Nonneuronal Interactions -- 4.5.5.4 Outlook -- 4.6 Conclusion -- References -- 5 Laser Direct-Write Bioprinting: A Powerful Tool for Engineering Cellular Microenvironments -- 5.1 Introduction -- 5.1.1 Spatial Influences of the Cellular Microenvironment -- 5.1.2 Overview of Printing Techniques for Engineering Cellular Microenvironments -- 5.1.3 Laser Direct-Write Overview -- 5.2 Materials in Laser Direct-Write -- 5.2.1 Material Properties Influencing Cellular Microenvironments -- 5.2.2 Matrigel-Based Laser Direct-Write -- 5.2.3 Gelatin-Based Laser Direct-Write -- 5.2.4 Dynamic Release Layers -- 5.2.5 Additional Hydrogels Used for Printing and the Receiving Substrate -- 5.2.6 Nonhydrogel Receiving Substrates and Synergistic Technologies -- 5.3 Laser Direct-Write Applications in 2D -- 5.4 Laser Direct-Write Applications in 3D -- 5.4.1 Microenvironments in 3D -- 5.4.2 Layer-By-Layer Approaches -- 5.4.3 Laser Direct-Write Microbeads -- 5.4.4 Fabrication of Core-Shelled Microenvironments -- 5.5 Conclusions and Future Directions -- Acknowledgments -- Questions -- References -- 6 Bioink Printability Methodologies for Cell-Based Extrusion Bioprinting -- 6.1 Introduction -- 6.2 Definition of Printability -- 6.2.1 Consideration on Novel Bioink Development -- 6.2.2 Measures of Printability -- 6.3 Relationships Between Printing Outcomes and Rheological Properties -- 6.3.1 Extrudability -- 6.3.2 Filament Classification -- 6.3.3 Shape Fidelity -- 6.3.4 Impact of Cell Density on Printing Outcomes -- 6.4 Relationships Between Printing Outcomes and Process Parameters -- 6.4.1 Process Parameters -- 6.4.2 Improving Printability by Process Parameters -- 6.5 Models for Printability -- 6.6 Current Limitations -- 6.7 Conclusion -- Acknowledgments -- Questions -- References -- 7 Hydrogels for Bioprinting -- 7.1 Hydrogels in Bioprinting. 
505 8 |a 7.1.1 Natural Hydrogel -- 7.1.1.1 Collagen -- 7.1.1.2 Gelatin -- 7.1.1.3 Fibrin -- 7.1.1.4 Alginate -- 7.1.1.5 Chitosan and Chitin -- 7.1.1.6 Hyaluronic Acid -- 7.1.1.7 Decellularized Extracellular Matrix -- 7.1.2 Synthetic Hydrogel -- 7.1.2.1 Poly(2-Hydroxyethyl Methacrylate) -- 7.1.2.2 Poly(vinyl alcohol) -- 7.1.2.3 Poly(ethylene glycol) -- 7.1.2.4 Poly(lactic acid) -- 7.1.2.5 Poloxamers -- 7.1.3 Bioinspired Synthetic Hydrogel -- 7.2 Considerations for Using Hydrogel in Bioprinting -- 7.2.1 General Consideration -- 7.2.1.1 Biocompatibility -- 7.2.1.2 Water Content -- 7.2.1.3 Swelling Behavior -- 7.2.1.4 Solute Transportation -- 7.2.1.5 Degradation -- 7.2.2 Technology Specific Consideration -- 7.2.2.1 Material Extrusion -- 7.2.2.1.1 Material Consideration -- 7.2.2.1.2 Process Consideration -- 7.2.2.2 Material Jetting -- 7.2.2.2.1 Material Consideration -- 7.2.2.2.2 Process Consideration -- 7.2.2.3 Vat Polymerization -- 7.2.2.3.1 Material Consideration -- 7.2.2.3.2 Process Consideration -- 7.3 Strategies Used in Hydrogel-Based Bioprinting -- 7.3.1 Tuning Rheology of Bioink -- 7.3.2 Inducing Crosslinking during Bioprinting -- 7.3.3 Crosslinking after Bioprinting -- 7.3.4 Bioprinting with Support -- 7.3.5 Hybrid Bioprinting -- 7.4 Perspective and Outlook -- References -- 8 4D Printing: 3D Printing of Responsive and Programmable Materials -- 8.1 INTRODUCTION -- 8.2 RESPONSIVE AND PROGRAMMABLE MATERIALS FOR 4D PRINTING -- 8.2.1 SHAPE-MEMORY POLYMERS -- 8.2.2 RESPONSIVE SHAPE-CHANGING POLYMERS AND THEIR COMPOSITES -- 8.3 REALIZATION OF 4D PRINTING -- 8.3.1 4D PRINTING BASED ON FUSION DEPOSITION MODELING -- 8.3.2 4D PRINTING BY DIRECT INK WRITING -- 8.3.3 4D PRINTING BY PHOTOPOLYMERIZATION -- 8.4 APPLICATIONS OF 4D PRINTING -- 8.4.1 BIOMEDICAL APPLICATIONS -- 8.4.1.1 Tissue Engineering -- 8.4.1.2 Implantable Devices -- 8.4.2 SOFT ROBOTS. 
505 8 |a 8.4.3 FLEXIBLE ELECTRONICS -- 8.4.4 FOOD PROCESSING -- 8.5 CONCLUSION AND PROSPECTIVE -- QUESTIONS -- References -- II. Applications: Nanotechnology and 3D Bioprinting for Tissue/Organ Regeneration -- 9 Blood Vessel Regeneration -- 9.1 Introduction -- 9.1.1 Additive Manufacturing -- 9.1.2 Important Proteins for Vasculature -- 9.1.3 Application to Vascular Implants -- 9.2 Cell-Free Scaffolds -- 9.2.1 Electrospinning -- 9.2.2 Stereolithography -- 9.2.3 Fused-Deposition Modeling -- 9.3 Cell-Based Scaffolds -- 9.3.1 Inkjet Printing -- 9.3.2 Extrusion-Based Bioprinting -- 9.3.2.1 Coaxial Printing -- 9.3.3 Laser-Assisted Printing -- 9.4 Comparison of the Technologies -- 9.4.1 Applications to the Vascular System and Other Tissue-Engineered Implants -- 9.5 Future Directions -- Acknowledgments -- References -- 10 3D PRINTING AND PATTERNING VASCULATURE IN ENGINEERED TISSUES -- 10.1 Introduction -- 10.1.1 Macroporous Constructs as Tissue Templates -- 10.1.2 Fabricating Fluidic Networks within Biomaterials -- 10.1.3 Approaches to Fabricate Endothelialized and Cell-Laden Tissue Constructs -- 10.1.4 Approaches to Integrate Patterned Vasculature In Vivo -- 10.1.5 Patterning Multiscale Vasculature with Endothelial Function -- 10.1.6 Angiogenesis, Vasculogenesis, and In Vivo Integration -- 10.1.7 Advanced Technologies which May Assist in Vascular Tissue Fabrication -- References -- 11 Craniofacial and Dental Tissue -- 11.1 Introduction -- 11.2 Clinical Need for Craniofacial and Dental Regenerative Medicine -- 11.2.1 Major Diagnoses and Causes -- 11.2.1.1 Dental Disease -- 11.2.1.2 Trauma -- 11.2.1.3 Aging -- 11.2.1.4 Cancer -- 11.2.1.5 Congenital -- 11.2.2 Standard-of-Care Procedures -- 11.2.2.1 Teeth -- 11.2.2.2 Bone and Cartilage -- 11.2.2.3 Soft Tissue -- 11.3 Craniofacial and Dental Regenerative Medicine Research -- 11.3.1 Novel Materials -- 11.3.2 Teeth. 
650 0 |a Tissue engineering. 
650 0 |a Guided tissue regeneration. 
650 0 |a Nanomedicine. 
650 0 |a Nanotechnology. 
650 2 |a Tissue Engineering  |0 (DNLM)D023822 
650 2 |a Guided Tissue Regeneration  |0 (DNLM)D048091 
650 2 |a Nanomedicine  |0 (DNLM)D050997 
650 2 |a Nanotechnology  |0 (DNLM)D036103 
650 6 |a G�enie tissulaire.  |0 (CaQQLa)201-0392445 
650 6 |a R�eg�en�eration tissulaire guid�ee.  |0 (CaQQLa)201-0358559 
650 6 |a Nanom�edecine.  |0 (CaQQLa)201-0448752 
650 6 |a Nanotechnologie.  |0 (CaQQLa)201-0225435 
650 7 |a Guided tissue regeneration  |2 fast  |0 (OCoLC)fst00949045 
650 7 |a Nanomedicine  |2 fast  |0 (OCoLC)fst01744350 
650 7 |a Nanotechnology  |2 fast  |0 (OCoLC)fst01032639 
650 7 |a Tissue engineering  |2 fast  |0 (OCoLC)fst01151484 
700 1 |a Zhang, Lijie Grace,  |e editor. 
700 1 |a Fisher, John P.,  |e editor. 
700 1 |a Leong, Kam W.  |c (Professor of biomedical engineering),  |e editor. 
776 0 8 |c Original  |z 0128245522  |z 9780128245521  |w (OCoLC)1258072468 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128245521  |z Texto completo