Cargando…

MicroRNA in human malignancies /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Negrini, Massimo, Calin, George A. (George Adrian), Croce, Carlo M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • MicroRNA in Human Malignancies
  • Copyright
  • Contents
  • Contributors
  • Section A: miRNAs involvement in basic mechanisms of cancer development
  • Chapter 1 Overview on miRNA classification, biogenesis, and functions
  • Introduction
  • MicroRNA and the complex biological system of gene expression
  • MicroRNA biogenesis, nomenclature, and classification
  • Origins of the canonical primary miRNA transcript
  • From canonical primary miRNA to mature miRNA
  • Noncanonical miRNA biogenesis and isomiRs
  • Nomenclature and classification
  • Mechanisms of miRNA-mediated gene regulation
  • Posttranscriptional regulation of mRNA stability and translation
  • Models of miRNA-mediated gene regulation within the nucleus
  • The dynamics of miRNA-mediated gene regulation
  • MicroRNA abundance and turnover
  • Concluding remarks
  • References
  • Chapter 2 microRNA in cancer: An overview
  • The dawn of miRNAs in human biology
  • First reported miRNA cancer-associated alterations
  • The age of discovery: Microarrays and miRNA cancer signatures
  • Functional classification of miRNA: The line between tumor suppressor and oncomiRs
  • Development of miRNA as biomarkers
  • The transition of miRNA into clinics
  • Conclusion and future perspectives
  • References
  • Chapter 3 miR-15/16 in human malignancies
  • 13q deletions in CLL and miR-15/16
  • Other mechanisms of miR-15/16 dysregulation
  • Interplay between ROR1, Bcl2, and miR-15/16 in CLL
  • miR-15/16 in mice
  • miR-15/16 in human AML and MDS
  • miR-15/16 in solid cancers
  • References
  • Chapter 4 microRNAs and tumor suppressor p53 regulation
  • p53 and its signaling pathway
  • GOF mutant p53 in cancer
  • miRNAs regulated by wild-type p53
  • miRNAs that directly regulate p53
  • miRNAs that indirectly regulate p53
  • miRNAs regulated by GOF mutp53
  • Conclusion
  • References.
  • Chapter 5 MicroRNA involvement in invasion and metastasis
  • Introduction-The process of metastasis
  • Direct regulation of metastasis
  • Metastasis-promoting miRNAs
  • Metastasis-Suppressing miRNAs
  • Indirect regulation of metastasis
  • Regulation of miRNA biosynthesis
  • RNA-RNA interaction-based miRNA regulation
  • Translational application of metastasis-associated miRNAs
  • Noninvasive biomarkers
  • miRNAs as therapeutics
  • Conclusions and perspectives
  • Acknowledgment
  • References
  • Chapter 6 microRNAs and metabolism
  • Introduction
  • Trafficking and consumption of glucose
  • NcRNAs regulate glucose trafficking in cancer cells by altering GLUT levels
  • NcRNAs regulate key glycolytic enzymes
  • Branched pathways of glycolysis
  • NcRNAs can influence glucose metabolism by regulating cancer-associated signaling pathways
  • PI3K/Akt/mTOR and HIF-1 signaling pathway
  • p53 signaling pathway
  • Conclusion and future perspectives
  • References
  • Chapter 7 microRNAs in inflammation processes
  • Introduction
  • MiRNA biogenesis and functions
  • Inflammation and mechanism of activation
  • miRNAs in inflammatory disease
  • Chronic respiratory diseases
  • Cystic fibrosis (CF)
  • Chronic obstructive pulmonary disease (COPD)
  • Asthma
  • Cardiovascular diseases
  • Atherosclerosis
  • Myocardial infarction (MI) and ischemia reperfusion injury (MIRI)
  • Autoimmune diseases
  • Systemic lupus erythematosus (SLE)
  • Rheumatoid arthritis (RA)
  • Multiple sclerosis (MS)
  • Cancer
  • Colorectal cancer (CRC)
  • Lung cancer (LC)
  • Prostate cancer (PC)
  • Conclusion
  • References
  • Section B: miRNAs methodologies
  • Chapter 8 Wet-lab methods for miRNA analysis
  • Introduction
  • Methods for miRNA discovery and detection
  • Northern blot
  • Hybridization microarrays
  • Quantitative PCR
  • Next-generation sequencing
  • Functional miRNA analysis.
  • Classical target validation methods: Reporter genes and RISC immunoprecipitation
  • High-throughput methods for target identification
  • Functional validation
  • Final remarks
  • Acknowledgments
  • References
  • Chapter 9 Bioinformatics utilities, web resources and integrative strategies for the analysis of miRNA regulatory networks
  • Introduction
  • Target prediction algorithms
  • Single predictors
  • Multiple predictors
  • In silico functional assessment of miRNAs: Tips and tricks
  • Functional analysis of miRNAs associated with survival time in lung adenocarcinoma: A test case
  • Conclusions
  • Acknowledgments
  • References
  • Chapter 10 Computational resources for analysis of miRNA targetome
  • Introduction
  • miRNA target databases
  • miRNA target databases for human
  • miRNA target databases for other species
  • miRNA algorithms
  • miRNA target prediction for humans
  • miRNA target prediction for other species
  • miRNA target prediction for plants
  • Conclusion
  • References
  • Chapter 11 miRNA bioinformatics and pathway analysis
  • The microRNA synergy
  • Role of microRNAs in biological signaling pathways
  • Pathways: The manually curated maps of the cell interactome
  • The miRNA interactome
  • miRNA pathway analysis methods
  • ORA on miRNA targets
  • FCS on miRNA targets
  • Topological approaches of pathway analysis with miRNAs
  • Computational tools for miRNA pathway analyses
  • Conclusions
  • Funding
  • References
  • Section C: miRNAs involvement in therapeutics/theranostics
  • Chapter 12 Opportunities of miRNAs in cancer therapeutics
  • Introduction
  • MicroRNAs in cancer. OncomiRs and tumor-suppressor miRNAs
  • Alterations in miRNAs and their appeal for cancer therapy
  • MicroRNA-based drug design
  • Choosing the therapeutic strategy: miRNA mimics, antagomiRs, and more
  • Chemical modifications of RNA-based drugs.
  • Delivery of RNA-based drugs
  • Chemical modifications
  • Liposomes, micelles, and exosomes
  • Nanoparticles
  • Viral vectors
  • Bacteria-based vectors (EDV nanocells)
  • MicroRNA-based therapeutics in the current clinic
  • MRX34
  • Cobomarsen
  • TargomiRs
  • Remlarsen
  • Other preclinical studies
  • The future of miRNAs in the clinic
  • Current challenges in the use of miRNAs
  • Quick degradation in the bloodstream
  • Extrahepatic delivery to tumor site
  • Limited tissue penetration
  • Endocytosis and endosome entrapment
  • Off-targets and side effects
  • Other challenges
  • Future perspectives
  • References
  • Section D: miRNAs involvement in human cancer: Pathophysiology and translational opportunities
  • Chapter 13 Pathophysiology roles and translational opportunities of miRNAs in acute leukemias
  • Introduction
  • MiRNAs involved in the pathogenesis of AML
  • miRNAs as biomarkers
  • miRNAs in chemoresistance
  • miRNAs as therapeutic targets
  • Role of miR-15/16 clusters in AML pathogenesis
  • Conclusions
  • References
  • Chapter 14 Pathophysiology roles and translational opportunities of miRNAs in CLL
  • MicroRNAs and the cellular origin of CLL cells
  • MicroRNAs and CLL genetics
  • microRNAs in proliferation and survival of CLL cells
  • microRNAs and BCR signaling
  • MicroRNAs and microenvironment
  • MicroRNAs and apoptosis
  • Translational opportunities
  • References
  • Chapter 15 Pathophysiology roles and translational opportunities of miRNAs in lymphoma
  • Summary
  • miRNAs and pathophysiology
  • miRNAs regulate the expression of genes that promote B-cell differentiation
  • Lymphomagenesis
  • DLBCL and miRNA
  • MZL and miRNA
  • Diagnosis
  • Prognosis
  • References
  • Chapter 16 Pathophysiology roles and translational opportunities of miRNAs in breast cancer
  • Breast physiology and pathology
  • Breast physiology
  • Breast pathology.