Cargando…

Mechanics of fibrous networks /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Silberschmidt, Vadim V.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Colección:Elsevier series in mechanics of advanced materials
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Mechanics of Fibrous Networks
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1: Mechanics of fibrous networks: Basic behaviour
  • 1.1. Introduction
  • 1.2. Numerical investigations
  • 1.2.1. Finite-element models of fibrous networks
  • 1.2.2. Assumptions, boundary conditions, and solver
  • 1.3. Results and discussion
  • 1.3.1. Macroscale analysis of deformation
  • 1.3.2. Microscale analysis of deformation
  • 1.4. Conclusions
  • Acknowledgement
  • References
  • Chapter 2: Micromechanics of nonwoven materials
  • 2.1. Introduction
  • 2.1.1. Classification of nonwoven materials
  • 2.1.2. Structural characterisation of nonwoven materials
  • 2.2. Theory of fibre-fibre contacts
  • 2.2.1. Fibre-fibre contacts in anisotropic materials
  • 2.2.2. 2D random nonwoven materials
  • 2.2.3. 3D random nonwoven materials
  • 2.2.4. Number of fibre-fibre contacts in mesodomain
  • 2.3. Tensile properties of nonwoven materials
  • 2.3.1. A `generalised initial tensile model of nonwoven materials
  • 2.4. Compression properties of nonwoven materials
  • 2.4.1. Compression-recovery model of nonwoven materials
  • 2.5. Shear properties of nonwoven materials
  • 2.6. Summary and future outlook
  • References
  • Chapter 3: Generalised continuum mechanics of random fibrous media
  • 3.1. Introduction
  • 3.2. Model
  • 3.3. Identification of 2D continuum equivalent moduli based on couple-stress and second gradient theories
  • 3.3.1. Couple-stress substitution continuum
  • 3.3.2. Second gradient substitution continuum
  • 3.4. Wave propagation analysis
  • 3.4.1. Equivalent couple stress continuum
  • 3.4.1.1. Influence of fibre bending length on the dispersion relation and on phase and group velocities
  • 3.4.1.2. Influence of the network density on the dispersion relation and on the phase velocity
  • 3.4.2. Equivalent second gradient continuum.
  • 3.4.2.1. Dispersion relations and phase velocity for the second-order effective continuum versus fibre bending length lb. ...
  • 3.4.2.2. Effect of network density and window size on the dispersion relation, phase velocity for the second gradient medium
  • 3.5. Conclusion
  • References
  • Chapter 4: Stochastic constitutive model of thin fibre networks
  • 4.1. Introduction
  • 4.2. Micromechanical simulation of thin random networks
  • 4.2.1. Mechanical properties of fibre and fibre bonds
  • 4.2.2. Fibre morphology
  • 4.2.3. Network geometry
  • 4.2.4. Fibre network simulation
  • 4.2.4.1. Random generation with target properties
  • 4.2.4.2. Finite-element model
  • 4.2.4.3. Finite-element simulation
  • 4.3. Mathematical theory of random spatial fields
  • 4.3.1. Random variables
  • 4.3.2. Univariate stationary random spatial field
  • 4.3.3. Simulation of stationary univariate random spatial fields
  • 4.3.4. Multivariate stationary random fields
  • 4.3.5. Simulation of multivariate stationary random fields
  • 4.4. Stochastic characterisation and continuum realisation of fibre network
  • 4.4.1. Characterisation of stochasticity in random fibre networks
  • 4.4.1.1. Stochastic volume elements
  • 4.4.1.2. Sampling of spatial fields
  • 4.4.1.3. Marginal probability distributions
  • 4.4.1.4. Transformation to Gaussian spatial fields
  • 4.4.1.5. Correlation coefficient
  • 4.4.1.6. Zero-level upcrossings
  • 4.4.2. Random generation
  • 4.4.2.1. Modelling of auto-covariance and cross-covariance functions
  • 4.4.2.2. Simulation of random spatial fields of strength and strain to failure
  • 4.4.3. Continuum mechanical simulation
  • 4.4.3.1. SVE-based constitutive model
  • 4.4.3.2. Finite-element implementation
  • 4.4.4. Method applicability
  • 4.4.4.1. Validation
  • 4.4.4.2. Influence of SVE size.
  • 4.4.4.3. Random failure simulation of large fibre networks (paper machines)
  • 4.5. Summary
  • References
  • Chapter 5: Numerical models of random fibrous networks
  • 5.1. Introduction
  • 5.2. Fundamental concepts of fibrous networks
  • 5.2.1. Fibre orientation distribution and randomness
  • 5.2.2. Affinity in network deformation behaviour
  • 5.2.3. Non-linear behaviour and curvature of fibres
  • 5.3. Numerical modelling of fibrous networks
  • 5.3.1. Continuous modelling approach
  • 5.3.2. Discontinuous modelling approach
  • 5.3.2.1. Statistically generated fibre networks
  • 5.3.2.2. Image-based models of fibrous networks
  • 5.3.2.3. Discontinuous models of fibrous networks for biomaterials
  • 5.3.2.4. Advanced FE models of fibrous networks
  • 5.4. Finite element simulations
  • 5.4.1. Effects of window size and periodicity on mechanical properties
  • 5.4.2. Fibre-to-fibre interactions
  • 5.5. Conclusion
  • References
  • Chapter 6: Computational homogenisation of three-dimensional fibrous materials
  • 6.1. Introduction
  • 6.2. Microscale: Fibres and fibre interactions
  • 6.3. Mesoscale: Fibre networks
  • 6.4. Mesoscale to macroscale: Computational homogenisation
  • 6.5. Case studies: Effects of fibre volume fraction and orientation variations
  • 6.6. Conclusions
  • References
  • Chapter 7: Elasto-plastic behaviour of three-dimensional stochastic fibre networks
  • 7.1. Introduction
  • 7.2. Micromechanics models
  • 7.3. Elastic behaviours
  • 7.4. Plastic behaviours
  • 7.5. Conclusion
  • Acknowledgement
  • References
  • Chapter 8: Hygro-mechanics of fibrous networks: A comparison between micro-scale modelling approaches
  • 8.1. Introduction
  • 8.2. Two-dimensional lattice model
  • 8.2.1. Model geometry
  • 8.2.2. Constitutive response
  • 8.2.3. Prediction of the hygro-elastic response via analytical homogenisation.
  • 8.3. Two-dimensional random network model
  • 8.3.1. Model geometry
  • 8.3.2. Constitutive response
  • 8.3.3. Prediction of the hygro-elastic response via asymptotic homogenisation
  • 8.4. Three-dimensional lattice model
  • 8.4.1. Model geometry
  • 8.4.2. Constitutive model
  • 8.4.3. Prediction of the hygro-elastic response via numerical homogenisation
  • 8.5. Results
  • 8.5.1. Geometrical and material parameters used in the simulations
  • 8.5.2. Influence of in-plane randomness on material response
  • 8.5.2.1. Local deformation field
  • 8.5.2.2. Effective hygro-elastic properties
  • 8.5.3. Influence of 3D geometry on the effective hygro-elastic properties
  • 8.5.3.1. Local deformation field
  • 8.5.3.2. Effective hygro-elastic properties
  • 8.6. Conclusions
  • References
  • Chapter 9: Deformation and damage of random fibrous networks
  • 9.1. Introduction
  • 9.1.1. Background
  • 9.1.2. Aim and objectives
  • 9.2. Experimentation
  • 9.2.1. Material
  • 9.2.2. Experimental procedure
  • 9.2.3. Single-fibre tests: Microscale
  • 9.2.4. Fabric tests: Macroscale
  • 9.3. Numerical investigations
  • 9.3.1. Finite-element modelling of random fibrous networks
  • 9.3.2. Finite-element formulations
  • 9.3.3. Assumptions, boundary conditions, and solver
  • 9.4. Results and discussions
  • 9.4.1. Macroscopic response of random fibrous networks: Experiments
  • 9.4.2. Deformation and damage evolution: FE simulations
  • 9.4.3. Microscopic analysis: FE simulations
  • 9.5. Conclusions
  • References
  • Chapter 10: Time-dependent statistical failure of fibre networks: Distributions, size scaling, and effects of disorders
  • 10.1. Introduction
  • 10.2. Formulation of time-dependent statistical failures of a single fibre
  • 10.3. Formulation of time-dependent statistical failure of fibre network
  • Theoretical consideration.