Cargando…

Mechanics of fibrous networks /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Silberschmidt, Vadim V.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2022.
Colección:Elsevier series in mechanics of advanced materials
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_on1298935190
003 OCoLC
005 20231120010633.0
006 m o d
007 cr |n|||||||||
008 220223s2022 ne o 000 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d OCLCO  |d OCLCF  |d OCLCO  |d UKAHL  |d UKMGB  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBC208577  |2 bnb 
016 7 |a 020452174  |2 Uk 
019 |a 1298851573  |a 1298883360 
020 |a 9780128222089  |q (electronic bk.) 
020 |a 0128222085  |q (electronic bk.) 
020 |z 9780128222072 
020 |z 0128222077 
035 |a (OCoLC)1298935190  |z (OCoLC)1298851573  |z (OCoLC)1298883360 
050 4 |a TA418.9.C6 
082 0 4 |a 620.1/18  |2 23 
245 0 0 |a Mechanics of fibrous networks /  |c edited by Vadim V. Silberschmidt. 
260 |a Amsterdam, Netherlands :  |b Elsevier,  |c 2022. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
336 |a still image  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 0 |a Elsevier series in mechanics of advanced materials 
588 0 |a Print version record. 
505 0 |a Intro -- Mechanics of Fibrous Networks -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Mechanics of fibrous networks: Basic behaviour -- 1.1. Introduction -- 1.2. Numerical investigations -- 1.2.1. Finite-element models of fibrous networks -- 1.2.2. Assumptions, boundary conditions, and solver -- 1.3. Results and discussion -- 1.3.1. Macroscale analysis of deformation -- 1.3.2. Microscale analysis of deformation -- 1.4. Conclusions -- Acknowledgement -- References -- Chapter 2: Micromechanics of nonwoven materials -- 2.1. Introduction -- 2.1.1. Classification of nonwoven materials -- 2.1.2. Structural characterisation of nonwoven materials -- 2.2. Theory of fibre-fibre contacts -- 2.2.1. Fibre-fibre contacts in anisotropic materials -- 2.2.2. 2D random nonwoven materials -- 2.2.3. 3D random nonwoven materials -- 2.2.4. Number of fibre-fibre contacts in mesodomain -- 2.3. Tensile properties of nonwoven materials -- 2.3.1. A `generalised initial tensile model of nonwoven materials -- 2.4. Compression properties of nonwoven materials -- 2.4.1. Compression-recovery model of nonwoven materials -- 2.5. Shear properties of nonwoven materials -- 2.6. Summary and future outlook -- References -- Chapter 3: Generalised continuum mechanics of random fibrous media -- 3.1. Introduction -- 3.2. Model -- 3.3. Identification of 2D continuum equivalent moduli based on couple-stress and second gradient theories -- 3.3.1. Couple-stress substitution continuum -- 3.3.2. Second gradient substitution continuum -- 3.4. Wave propagation analysis -- 3.4.1. Equivalent couple stress continuum -- 3.4.1.1. Influence of fibre bending length on the dispersion relation and on phase and group velocities -- 3.4.1.2. Influence of the network density on the dispersion relation and on the phase velocity -- 3.4.2. Equivalent second gradient continuum. 
505 8 |a 3.4.2.1. Dispersion relations and phase velocity for the second-order effective continuum versus fibre bending length lb. ... -- 3.4.2.2. Effect of network density and window size on the dispersion relation, phase velocity for the second gradient medium -- 3.5. Conclusion -- References -- Chapter 4: Stochastic constitutive model of thin fibre networks -- 4.1. Introduction -- 4.2. Micromechanical simulation of thin random networks -- 4.2.1. Mechanical properties of fibre and fibre bonds -- 4.2.2. Fibre morphology -- 4.2.3. Network geometry -- 4.2.4. Fibre network simulation -- 4.2.4.1. Random generation with target properties -- 4.2.4.2. Finite-element model -- 4.2.4.3. Finite-element simulation -- 4.3. Mathematical theory of random spatial fields -- 4.3.1. Random variables -- 4.3.2. Univariate stationary random spatial field -- 4.3.3. Simulation of stationary univariate random spatial fields -- 4.3.4. Multivariate stationary random fields -- 4.3.5. Simulation of multivariate stationary random fields -- 4.4. Stochastic characterisation and continuum realisation of fibre network -- 4.4.1. Characterisation of stochasticity in random fibre networks -- 4.4.1.1. Stochastic volume elements -- 4.4.1.2. Sampling of spatial fields -- 4.4.1.3. Marginal probability distributions -- 4.4.1.4. Transformation to Gaussian spatial fields -- 4.4.1.5. Correlation coefficient -- 4.4.1.6. Zero-level upcrossings -- 4.4.2. Random generation -- 4.4.2.1. Modelling of auto-covariance and cross-covariance functions -- 4.4.2.2. Simulation of random spatial fields of strength and strain to failure -- 4.4.3. Continuum mechanical simulation -- 4.4.3.1. SVE-based constitutive model -- 4.4.3.2. Finite-element implementation -- 4.4.4. Method applicability -- 4.4.4.1. Validation -- 4.4.4.2. Influence of SVE size. 
505 8 |a 4.4.4.3. Random failure simulation of large fibre networks (paper machines) -- 4.5. Summary -- References -- Chapter 5: Numerical models of random fibrous networks -- 5.1. Introduction -- 5.2. Fundamental concepts of fibrous networks -- 5.2.1. Fibre orientation distribution and randomness -- 5.2.2. Affinity in network deformation behaviour -- 5.2.3. Non-linear behaviour and curvature of fibres -- 5.3. Numerical modelling of fibrous networks -- 5.3.1. Continuous modelling approach -- 5.3.2. Discontinuous modelling approach -- 5.3.2.1. Statistically generated fibre networks -- 5.3.2.2. Image-based models of fibrous networks -- 5.3.2.3. Discontinuous models of fibrous networks for biomaterials -- 5.3.2.4. Advanced FE models of fibrous networks -- 5.4. Finite element simulations -- 5.4.1. Effects of window size and periodicity on mechanical properties -- 5.4.2. Fibre-to-fibre interactions -- 5.5. Conclusion -- References -- Chapter 6: Computational homogenisation of three-dimensional fibrous materials -- 6.1. Introduction -- 6.2. Microscale: Fibres and fibre interactions -- 6.3. Mesoscale: Fibre networks -- 6.4. Mesoscale to macroscale: Computational homogenisation -- 6.5. Case studies: Effects of fibre volume fraction and orientation variations -- 6.6. Conclusions -- References -- Chapter 7: Elasto-plastic behaviour of three-dimensional stochastic fibre networks -- 7.1. Introduction -- 7.2. Micromechanics models -- 7.3. Elastic behaviours -- 7.4. Plastic behaviours -- 7.5. Conclusion -- Acknowledgement -- References -- Chapter 8: Hygro-mechanics of fibrous networks: A comparison between micro-scale modelling approaches -- 8.1. Introduction -- 8.2. Two-dimensional lattice model -- 8.2.1. Model geometry -- 8.2.2. Constitutive response -- 8.2.3. Prediction of the hygro-elastic response via analytical homogenisation. 
505 8 |a 8.3. Two-dimensional random network model -- 8.3.1. Model geometry -- 8.3.2. Constitutive response -- 8.3.3. Prediction of the hygro-elastic response via asymptotic homogenisation -- 8.4. Three-dimensional lattice model -- 8.4.1. Model geometry -- 8.4.2. Constitutive model -- 8.4.3. Prediction of the hygro-elastic response via numerical homogenisation -- 8.5. Results -- 8.5.1. Geometrical and material parameters used in the simulations -- 8.5.2. Influence of in-plane randomness on material response -- 8.5.2.1. Local deformation field -- 8.5.2.2. Effective hygro-elastic properties -- 8.5.3. Influence of 3D geometry on the effective hygro-elastic properties -- 8.5.3.1. Local deformation field -- 8.5.3.2. Effective hygro-elastic properties -- 8.6. Conclusions -- References -- Chapter 9: Deformation and damage of random fibrous networks -- 9.1. Introduction -- 9.1.1. Background -- 9.1.2. Aim and objectives -- 9.2. Experimentation -- 9.2.1. Material -- 9.2.2. Experimental procedure -- 9.2.3. Single-fibre tests: Microscale -- 9.2.4. Fabric tests: Macroscale -- 9.3. Numerical investigations -- 9.3.1. Finite-element modelling of random fibrous networks -- 9.3.2. Finite-element formulations -- 9.3.3. Assumptions, boundary conditions, and solver -- 9.4. Results and discussions -- 9.4.1. Macroscopic response of random fibrous networks: Experiments -- 9.4.2. Deformation and damage evolution: FE simulations -- 9.4.3. Microscopic analysis: FE simulations -- 9.5. Conclusions -- References -- Chapter 10: Time-dependent statistical failure of fibre networks: Distributions, size scaling, and effects of disorders -- 10.1. Introduction -- 10.2. Formulation of time-dependent statistical failures of a single fibre -- 10.3. Formulation of time-dependent statistical failure of fibre network -- Theoretical consideration. 
650 0 |a Fibrous composites. 
650 0 |a Mechanics. 
650 2 |a Mechanics  |0 (DNLM)D019563 
650 6 |a Composites �a fibres.  |0 (CaQQLa)201-0024427 
650 6 |a M�ecanique.  |0 (CaQQLa)201-0003997 
650 7 |a fibrous composite.  |2 aat  |0 (CStmoGRI)aat300189659 
650 7 |a mechanics (physics)  |2 aat  |0 (CStmoGRI)aat300054568 
650 7 |a Fibrous composites  |2 fast  |0 (OCoLC)fst00923679 
650 7 |a Mechanics  |2 fast  |0 (OCoLC)fst01013446 
700 1 |a Silberschmidt, Vadim V. 
776 0 8 |c Original  |z 0128222077  |z 9780128222072  |w (OCoLC)1237630868 
776 0 8 |i Print version:  |t Mechanics of fibrous networks  |z 9780128222072  |w (OCoLC)1295100634 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128222072  |z Texto completo