Cargando…

Gene regulatory mechanisms in development and evolution : insights from echinoderms /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ettensohn, Charles A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge MA : Academic Press is an imprint of Elsevier, 2022.
Edición:First edition.
Colección:Current topics in developmental biology ; v. 146.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Gene Regulatory Mechanisms in Development and Evolution: Insights from Echinoderms
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinod ...
  • 1. Introduction
  • 2. Echinoderm mesoderm specification pathways
  • 2.1. Euechinoid sea urchin skeletogenic mesoderm specification
  • 2.2. Other Echinoderm Endo-mesoderm Specification
  • 2.3. Cidaroid sea urchin skeletogenic mesodermal specification
  • 3. Evolution of echinoderm double negative gate
  • 3.1. Pmar1-Phb Evolution: replacement of the primary repressor in the DNG evolution
  • 3.2. Drastic and rapid innovation of euechinoid Pmar1-HesC DNG
  • 3.3. Developmental modification with DNG evolution in echinoderms
  • 3.4. Echinoderm Larval skeleton
  • 3.5. Micromeres
  • 4. Stepwise and gradual modification behind the drastic divergence of hesC function
  • 5. Overview of early developmental innovations in other organisms
  • 5.1. Spiralian SPILE genes
  • 5.1.1. Drosophila bicoid gene
  • 5.2. Evolutionary implications of early pathway divergence in echinoderms, spiralians and Drosophila
  • 5.3. Selfish genetic material and maternal toxins/zygotic antidote
  • 6. Conclusions and further insights
  • References
  • Chapter Two: Development of a larval nervous system in the sea urchin
  • 1. Development and anatomy of the sea urchin larval nervous system
  • 2. Patterning the anterior neurectoderm (ANE)
  • 3. Neurogenesis in the ANE
  • 4. Patterning the ciliary band domain
  • 5. Neural specification in and near the ciliary band
  • 6. Patterning the endomesoderm
  • 7. Specification of neurons originating along the gut
  • 8. A functional nervous system in the larva
  • 9. Conclusion
  • Acknowledgments
  • References.
  • Chapter Three: Post-transcriptional regulation of factors important for the germ line
  • 1. Introduction
  • 1.1. Germline formation
  • 1.2. Mechanisms of germline formation
  • 1.3. Post-transcriptional regulation
  • 1.4. Germ line formation in a sea urchin
  • 1.5. Germ line formation in a sea star
  • 2. Multiple transcripts from the same gene
  • 3. The differential regulation of mRNAs encoding germline factors
  • 4. Translational regulation of the germ line and their factors
  • 5. Turnover of germline proteins
  • 6. What does all this mean in terms of the germline vs somatic cell fates?
  • References
  • Chapter Four: Extreme phenotypic divergence and the evolution of development
  • 1. Introduction
  • 2. Studying developmental evolution
  • 2.1. Evolutionary context matters
  • 2.2. Canonical approaches in evo-devo
  • 2.3. A third approach: Extreme biology
  • 3. Life history and the evolution of development
  • 3.1. Life history evolution in echinoderms
  • 3.2. Developmental evolution within the ancestral life history
  • 3.3. Rapid evolution of development within Heliocidaris
  • 3.4. Life history switches as natural perturbation experiments
  • 4. Evolution of developmental processes within Heliocidaris
  • 4.1. Evolution of maternal provisioning
  • 4.2. Evolution of developmental gene expression
  • 4.3. Genetics of evolutionary change in transcriptional regulation
  • 4.4. Evolution of dGRNs and organismal traits
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter Five: Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogr ...
  • 1. Introduction
  • 2. The alx1 gene and protein
  • 2.1. Organization and evolution of the alx1 gene in echinoderms
  • 2.2. DNA binding properties of Alx1
  • 3. Alx1 and gene regulatory network (GRN) architecture
  • 3.1. Upstream regulators of alx1.
  • 3.1.1. Early zygotic activation
  • 3.1.2. Later regulatory inputs
  • 3.2. Downstream targets of alx1
  • 3.2.1. Regulatory genes
  • 3.2.2. Linking a GRN to morphogenesis: Control of PMC behavior by alx1
  • 3.2.3. alx1 as a terminal selector gene
  • 3.2.4. Co-regulation of effector genes by alx1 and ets1
  • 3.2.5. Signal-dependent regulation of effector genes at late stages of embryogenesis
  • 3.3. Competition between GRNs: Repression of alternative fates by Alx1
  • 4. Alx1 and other developmental and evolutionary processes
  • 4.1. Alx1 and cellular reprogramming
  • 4.2. Alx1 and cell type evolution
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter Six: Pigment cells: Paragons of cellular development
  • 1. Introduction
  • 2. Pigment cells are a distinct mesodermal lineage
  • 3. Pigment cell precursors transition to mesenchyme, migrate, and re-insert in epithelium
  • 4. Sp1 and NCAM
  • 5. Pigment cells and archenteron formation
  • 6. Localized maternal factors in the egg lead to short range signals that cause differentiation of pigment cells
  • 7. A network of interacting genes controls pigment cell differentiation
  • 8. Detailed descriptions of lineage specific genes provide insights into the enigmatic functions of pigment cells
  • 9. Pigment cells as immunocytes
  • 10. Conclusions
  • Acknowledgments
  • References
  • Chapter Seven: Dorsal-ventral axis formation in sea urchin embryos
  • 1. Introduction
  • 2. DV morphological differences during planktotrophic sea urchin embryogenesis
  • 3. Oxidase activity is related to the sea urchin dorsoventral axis
  • 4. Molecular mechanisms patterning the planktotrophic sea urchin DV axis
  • 4.1. Initial expression of nodal on the ventral side
  • 4.2. Nodal and BMP signaling patterns the sea urchin DV axis
  • 4.3. Regional DV patterning
  • 5. DV patterning in lecithotrophic sea urchins.
  • 6. Evolution of DV patterning in sea urchins
  • 7. Conclusions
  • Acknowledgments
  • References
  • Chapter Eight: Micromere formation and its evolutionary implications in the sea urchin
  • 1. Introduction
  • 2. Micromere formation in the sea urchin embryo
  • 2.1. Early development of the sea urchin embryo
  • 2.2. Evolutionary introduction of micromeres during echinoid diversification
  • 3. Unique properties of the micromere
  • 3.1. Structural and chemical properties of the micromere
  • 3.2. Specification of the micromere lineage
  • 3.3. The gene regulatory network of micromeres
  • 3.4. Modification of the micromere GRNs during evolution
  • 4. Mechanism of micromere formation through asymmetric cell division
  • 4.1. Conserved molecular mechanism of asymmetric cell division
  • 4.2. Evolutionary introduction of the micromere through modifications of the AGS protein
  • 5. Unique transcriptional and translational activity of the micromere and its descendants
  • 5.1. Unique activity of the small micromere
  • 5.2. Hypothesis: Asymmetric segregation of a translational regulator Vasa and its possible involvement in micromere speci ...
  • 6. Conclusions and perspectives
  • Acknowledgment
  • References.