Multi-objective combinatorial optimization problems and solution methods
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front cover
- Half title
- Title
- Copyright
- Dedication
- Contents
- Contributors
- Editors Biography
- Preface
- Acknowledgments
- Chapter 1 Multiobjective combinatorial optimization problems: social, keywords, and journal maps
- 1.1 Introduction
- 1.2 Methodology
- 1.3 Data and basic statistics
- 1.4 Results and discussion
- 1.4.1 Mapping the cognitive space
- 1.4.2 Mapping the social space
- 1.5 Conclusions and direction for future research
- References
- Chapter 2 The fundamentals and potential of heuristics and metaheuristics for multiobjective combinatorial optimization problems and solution methods
- 2.1 Introduction
- 2.2 Multiobjective combinatorial optimization
- 2.3 Heuristics concepts
- 2.4 Metaheuristics concepts
- 2.5 Heuristics and metaheuristics examples
- 2.5.1 Tabu search
- 2.6 Evolutionary algorithms (EA)
- 2.7 Genetic algorithms (GA)
- 2.8 Simulated annealing
- 2.9 Particle swarm optimization (PSO)
- 2.10 Scatter search (SS)
- 2.11 Greedy randomized adaptive search procedures (GRASP)
- 2.12 Ant-colony optimization
- 2.13 Clustering search
- 2.14 Hybrid metaheuristics
- 2.15 Differential evolution (DE)
- 2.16 Teaching learning-based optimization (TLBO)
- 2.17 Discussion
- 2.18 Conclusions
- 2.19 Future trends
- References
- Chapter 3 A survey on links between multiple objective decision making and data envelopment analysis
- 3.1 Introduction
- 3.2 Preliminary discussion
- 3.2.1 Multiple objective decision making
- 3.2.2 Data envelopment analysis
- 3.3 Application of MODM concepts in the DEA methodology
- 3.3.1 Classical DEA models
- 3.3.2 Target setting
- 3.3.3 Value efficiency
- 3.3.4 Secondary goal models
- 3.3.5 Common set of weights
- 3.3.6 DEA-discriminant analysis
- 3.3.7 Efficient units and efficient hyperplanes
- 3.4 Classification of usage of DEA in MODM
- 3.4.1 Efficient points
- 3.5 Discussion and conclusion
- References
- Chapter 4 Improved crow search algorithm based on arithmetic crossover-a novel metaheuristic technique for solving engineering optimization problems
- 4.1 Introduction
- 4.2 Materials and methods
- 4.2.1 Crow search optimization
- 4.2.2 Arithmetic crossover based on genetic algorithm
- 4.2.3 Hybrid CO algorithm
- 4.3 Results and discussion
- 4.4 Conclusion
- Acknowledgments
- References
- Chapter 5 MOGROM: Multiobjective Golden Ratio Optimization Algorithm
- 5.1 Introduction
- 5.1.1 Definition of multiobjective problems (MOPs)
- 5.1.2 Literature review
- 5.1.3 Background and related work
- 5.2 GROM and MOGROM
- 5.2.1 MOGROM
- 5.3 Simulation results, investigation, and analysis
- 5.3.1 First class
- 5.3.2 Second class
- 5.3.3 Third class
- 5.3.4 Fourth class
- 5.3.5 Fifth class
- 5.4 Conclusion
- References