Cargando…

Artificial intelligence and data science in environmental sensing

Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Asadnia, Mohsen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2022.
Colección:Cognitive data science in sustainable computing.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_on1296405187
003 OCoLC
005 20231120010632.0
006 m o d
007 cr un|---aucuu
008 220212s2022 enka ob 001 0 eng d
040 |a YDX  |b eng  |c YDX  |d OPELS  |d EBLCP  |d OCLCO  |d OCLCF  |d N$T  |d MUU  |d OCLCO  |d OCLCQ  |d UPM  |d OCLCQ  |d NWQ  |d OCLCO 
019 |a 1296418197  |a 1296532681 
020 |a 9780323905077  |q (electronic bk.) 
020 |a 0323905072  |q (electronic bk.) 
020 |z 9780323905084 
035 |a (OCoLC)1296405187  |z (OCoLC)1296418197  |z (OCoLC)1296532681 
050 4 |a GE45.R44 
082 0 4 |a 363.7063028563  |2 23 
245 0 0 |a Artificial intelligence and data science in environmental sensing  |h [electronic resource] /  |c edited by Mohsen Asadnia [and more]. 
260 |a London :  |b Academic Press,  |c 2022. 
300 |a 1 online resource (xviii, 305 pages)  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cognitive data science in sustainable computing 
504 |a Includes bibliographical references and index. 
505 0 0 |t Smart sensing technologies for wastewater treatment plants --  |t Advancements and artificial intelligence approaches in antennas for environmental sensing --  |t Intelligent geo-sensing for moving toward smart, resilient, low emission, and less carbon transport --  |t Language of response surface methodology as an experimental strategy for electrochemical wastewater treatment process optimization --  |t Artificial intelligence and sustainability: solutions to social and environmental challenges --  |t Application of multi-criteria decision-making tools for a site analysis of offshore wind turbines --  |t Recent advances of image processing techniques in agriculture --  |t Tuning swarm behavior for environmental sensing tasks represented as coverage problems --  |t Machine learning applications for developing sustainable construction materials --  |t The AI-assisted removal and sensor-based detection of contaminants in the aquatic environment --  |t Recent progress in biosensors for wastewater monitoring and surveillance --  |t Machine learning in surface plasmon resonance for environmental monitoring. 
520 |a Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications. 
650 0 |a Environmental monitoring  |x Remote sensing  |x Data processing. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence  |0 (DNLM)D001185 
650 6 |a Environnement  |0 (CaQQLa)201-0019669  |x Surveillance  |0 (CaQQLa)201-0019669  |x T�el�ed�etection  |0 (CaQQLa)201-0380277  |x Informatique.  |0 (CaQQLa)201-0380011 
650 6 |a Intelligence artificielle.  |0 (CaQQLa)201-0008626 
650 7 |a artificial intelligence.  |2 aat  |0 (CStmoGRI)aat300251574 
650 7 |a Artificial intelligence  |2 fast  |0 (OCoLC)fst00817247 
700 1 |a Asadnia, Mohsen. 
776 0 8 |i Print version:  |z 9780323905077 
776 0 8 |i Print version:  |z 0323905080  |z 9780323905084  |w (OCoLC)1265457479 
830 0 |a Cognitive data science in sustainable computing. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323905084  |z Texto completo