Cargando…

Modern permanent magnets /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Croat, John J. (Editor ), Ormerod, J. G. (John G.) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Woodhead Publishing, 2022.
Colección:Woodhead Publishing series in electronic and optical materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • 1
  • The history of permanent �magnets
  • 1.1 Introduction
  • 1.2 Lodestones: the first permanent magnets
  • 1.3 Early permanent magnet studies
  • 1.4 The era of steel permanent magnets
  • 1.5 The discovery of alnico permanent magnets
  • 1.6 The discovery of hard ferrite magnets
  • 1.7 The discovery of Sm-Co permanent magnets
  • 1.8 The discovery of NdFeB permanent magnets
  • 1.9 The discovery of Sm-Fe-N permanent magnets
  • 1.10 Future permanent magnet materials
  • 1.11 Summary
  • References
  • 2
  • Fundamental properties of permanent magnets
  • 2.1 Introduction
  • 2.2 The different families and types of permanent magnets
  • 2.3 Key magnetic parameters
  • 2.4 On the origin of magnetism
  • 2.5 The different types of magnetism
  • 2.6 The origin of anisotropy in permanent magnets
  • 2.7 Magnetic domains and domain walls
  • 2.8 Magnetic hysteresis
  • 2.9 Coercivity mechanism in modern permanent magnets
  • 2.10 Stability of permanent magnets
  • References
  • 3
  • Recent advances in hard �ferrite magnets
  • 3.1 Introduction
  • 3.2 Historical overview of M-type Sr- and Ba- Hexaferrites
  • 3.3 Crystal structure, intrinsic magnetic properties, microstructure and morphology
  • 3.4 Advances towards the improvement of intrinsic magnetic properties
  • 3.5 Industrial fabrication routes
  • 3.5.1 Fabrication of hexaferrites
  • 3.5.2 Bonded magnets
  • 3.5.3 Sintered magnets
  • 3.5.4 Additive manufacturing
  • 3.6 Recycling efforts, recovery, and reusability in production line
  • 3.7 Applications of hexaferrites: present and perspectives
  • References
  • 4
  • Modern Sm-Co permanent magnets
  • 4.1 Introduction
  • 4.2 Manufacturing process of Sm-Co magnets
  • 4.3 High (BH) max Sm 2 Co 17 type permanent magnets.
  • 4.4 Temperature compensated Sm-Co magnets
  • 4.5 Ultra-high temperature Sm-Co magnets with small reversible temperature coefficient of B r
  • 4.6 Performance of Sm-Co magnets in special environments
  • 4.7 Laminated Sm-Co magnets
  • 4.8 Additive manufacturing
  • 4.9 Small magnets
  • 4.10 Sm-Co nanoparticles and nanoflakes for nanocomposite magnets
  • 4.11 Summary
  • References
  • 5
  • The status of sintered NdFeB magnets
  • 5.1 Introduction
  • 5.2 History of the development of Nd-Fe-B
  • 5.2.1 How did the idea of NdFeB sintered magnets come about?
  • 5.2.2 How were the NdFeB sintered magnets developed?
  • 5.2.3 How was the discovery of NdFeB sintered magnets presented?
  • 5.3 Compositions of the NdFeB sintered magnets and their magnetic properties
  • 5.4 Production process for sintered NdFeB magnets
  • 5.4.1 Preparation of raw material alloys (strip-casting method)
  • 5.4.2 Hydrogen decrepitation (HD)
  • 5.4.3 Jet milling
  • 5.4.4 Application of lubricant to the powder surface
  • 5.4.5 Magnetic field pressing
  • 5.4.6 Sintering
  • 5.4.7 Heat treatment
  • 5.4.8 Machining
  • 5.4.9 Surface treatment
  • 5.4.10 Magnetization
  • 5.5 Progress in the microstructure investigation
  • 5.6 Development of HRE-Free and reduced HRE magnets
  • 5.6.1 Development of the powder-blend method
  • 5.6.2 Development of grain boundary diffusion process
  • 5.6.3 Ga-doped NdFeB sintered magnets
  • 5.6.4 Grain size refinement
  • 5.7 Ultimate NdFeB sintered magnets for EV traction motors
  • References
  • 6
  • Compression bonded NdFeB permanent magnets
  • 6.1 Introduction
  • 6.2 The compression molding process
  • 6.3 Isotropic compression bonded NdFeB permanent magnets
  • 6.4 Anisotropic hot deformed NdFeB compression bonded magnets
  • 6.5 Compression molded HDDR permanent magnets
  • References
  • 7
  • Injection molded permanent magnets.
  • 7.1 Introduction
  • 7.2 Overview of applications, basic parameters and materials
  • 7.3 Manufacturing
  • 7.4 Polarization patterns
  • 7.5 Design of in-mold magnetized magnets
  • 7.6 Design of pulse magnetized magnets
  • 7.7 Applications
  • Sensors
  • 7.8 Applications
  • Electrical machines
  • 7.9 Summary
  • Acknowledgments
  • References
  • 8
  • Hot formed NdFeB magnets
  • 8.1 Introduction
  • 8.2 Development of hot-formed Nd-Fe-B magnets
  • 8.2.1 Previous examples of magnets made by plastic deformation
  • 8.2.2 Invention of rapidly quenched Nd-Fe-B and application of hot deformation
  • 8.2.3 Early studies and commercialization efforts
  • 8.2.3.1 MQ2 and MQ3 (die-upset) commercialization efforts
  • 8.2.3.2 Mode of deformation and alignment directions
  • 8.2.3.3 Cast and rolled Pr-Fe-B
  • 8.2.4 Commercialization of hot-deformed Nd-Fe-B magnets
  • 8.2.4.1 Starting powders
  • 8.2.4.2 Densification of rapidly quenched powders
  • 8.2.4.3 Hot workability
  • 8.2.4.4 Development of radially oriented rings
  • 8.2.4.5 Rare-earth crisis and need for HREE-free magnets
  • 8.2.4.6 Development of axially oriented plates
  • 8.3 Characteristics of hot-deformed Nd-Fe-B magnets
  • 8.3.1 Basic properties
  • 8.3.2 Comparison with sintered Nd-Fe-B
  • 8.3.2.1 Microstructure
  • 8.3.2.2 Coercivity and thermal stability
  • 8.3.2.3 Initial magnetization and minor loops
  • 8.3.2.4 Corrosion resistance
  • 8.3.2.5 Producibility
  • 8.4 Fundamental research
  • 8.4.1 Alignment mechanism
  • 8.4.2 Coercivity mechanism
  • 8.4.3 Grain boundary analyses and modification
  • 8.4.4 Other notable research
  • 8.5 Applications
  • 8.5.1 Radially oriented rings
  • 8.5.1.1 FA (Factory automation) servo motors
  • 8.5.1.2 EPS (Electric power steering)
  • 8.5.1.3 Assembly, magnetizing, banding
  • 8.5.2 Axially oriented plates
  • 8.5.2.1 EV/HEV traction motors.
  • 8.6 Future outlook
  • 8.6.1 Addressing resource and cost issues
  • 8.6.2 Higher magnetic properties
  • 8.6.3 Improvement of electrical resistance
  • 8.6.4 Flexible shape extrusions
  • 8.7 Concluding remarks
  • Acknowledgments
  • References
  • 9
  • Bonded Sm-Fe-N permanent magnets
  • 9.1 Introduction
  • 9.2 Interstitial modification
  • 9.3 Basic characteristics of Sm-Fe-N compounds
  • 9.3.1 Crystal structure
  • 9.3.2 Intrinsic magnetic properties
  • 9.3.3 Dense Sm-Fe-N magnets
  • 9.4 Magnet processing
  • 9.4.1 Sm-Fe-N powder
  • 9.4.1.1 Anisotropic Sm 2 Fe 17 N 3 powder
  • 9.4.1.2 Isotropic SmFe 7-9 N powder
  • 9.4.2 Production processes for bonded magnets
  • 9.4.3 Magnetic properties of bonded magnets
  • 9.5 Applications
  • 9.5.1 Features of bonded Sm-Fe-N magnets
  • 9.5.2 Application examples
  • 9.6 Conclusion
  • Acknowledgments
  • References
  • 10
  • Critical materials for permanent magnets
  • 10.1 Introduction
  • 10.2 What is a critical material?
  • 10.3 Critical materials in permanent magnets
  • 10.3.1 Growth of the market
  • 10.3.2 The rare earth elements: a general introduction to their science and technology
  • 10.3.3 Samarium-Cobalt
  • 10.3.3.1 Criticality of samarium
  • 10.3.3.2 Criticality of cobalt
  • 10.3.4 Neodymium-Iron-Boron
  • 10.3.4.1 Criticality of neodymium and praseodymium
  • 10.3.4.2 Criticality of dysprosium, terbium and holmium
  • 10.4 Effects of criticality on technology evolution, and vice versa
  • 10.4.1 Conventional vehicles
  • 10.4.2 Electric vehicles
  • 10.4.3 Wind power
  • 10.5 Source diversification
  • 10.5.1 Samarium
  • 10.5.2 Cobalt
  • 10.5.3 Neodymium and praseodymium
  • 10.5.4 Dysprosium, terbium and holmium
  • 10.6 Substitution
  • 10.6.1 Technology substitutions
  • 10.6.1.1 LEDs vs fluorescent lamps, and their impact on magnet materials
  • 10.6.2 Material substitutions.
  • 10.6.2.1 Using Nd-Fe-B in place of Sm-Co after the cobalt crisis
  • 10.6.2.2 Element substitutions within Nd-Fe-B
  • 10.6.2.3 Praseodymium and neodymium
  • 10.6.2.4 Terbium, dysprosium and holmium
  • 10.6.2.5 Substitutes for the Nd-Fe-B family of alloys
  • 10.6.2.6 Superconducting magnets
  • 10.6.2.7 Gap magnets
  • 10.6.2.8 Using Sm-Co in place of Nd-Fe-B
  • 10.6.2.9 3-D printing of magnets
  • 10.7 Summary
  • Acknowledgments
  • References
  • 11
  • Permanent magnet coatings and testing procedures
  • 11.1 Introduction
  • 11.2 Magnet characteristics relevant to coating
  • 11.2.1 Alnico
  • 11.2.2 Ferrite
  • 11.2.3 Samarium cobalt
  • 11.2.4 Neodymium iron boron
  • 11.2.5 Samarium iron nitride (SmFeN)
  • 11.2.6 Bonded magnets
  • 11.3 Coating permanent magnets
  • 11.3.1 Surface preparation
  • 11.3.2 Conversion coatings
  • 11.3.3 Organic coatings
  • 11.3.4 Parylene
  • 11.3.5 Metallic plating
  • 11.3.6 Aluminum ion vapor deposition (IVD)
  • 11.3.7 Combination coatings
  • 11.4 Coating test and evaluation
  • 11.4.1 Temperatuire and humidity test
  • 11.4.2 Autoclave (hygrothermal) test
  • 11.4.3 Salt spray (fog) test
  • 11.4.4 Other tests
  • 11.5 Summary
  • References
  • 12
  • Permanent magnet markets and applications
  • 12.1 Introduction
  • 12.2 Permanent magnet materials
  • 12.3 Applications and markets
  • 12.4 Price/Performance ratio for permanent magnet types
  • niche and mass market magnet materials
  • 12.5 Current and future major applications and devices ( Constantinides, 2021
  • Benecki et al., 2021 )
  • 12.5.1 Permanent magnet motors
  • 12.5.2 Types of motors
  • 12.5.3 Motor efficiency
  • 12.5.4 Motor size and diversity
  • 12.5.5 Information storage: computer hard disk and optical storage drives
  • 12.5.6 Industrial and general use motors
  • 12.5.7 Permanent magnets in transportation.