Cargando…

Applied mechanics of polymers : properties, processing, and behavior /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Youssef, George (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Applied Mechanics of Polymers: Properties, Processing, and Behavior
  • Copyright
  • Contents
  • Chapter 1: Introduction and background
  • 1.1. Introduction
  • 1.2. Historical perspective
  • 1.3. Type of polymers
  • 1.4. Areas of study in polymer science
  • 1.4.1. Polymer chemistry
  • 1.4.2. Polymer physics
  • 1.4.3. Polymer mechanics
  • 1.5. Industrial applications of polymers
  • 1.6. Closing remarks
  • Practice problems
  • References
  • Chapter 2: General properties of polymers
  • 2.1. Introduction
  • 2.2. Quasi-static mechanical response
  • 2.3. Long-term properties
  • 2.3.1. Creep
  • 2.3.2. Relaxation
  • 2.4. Dynamic properties
  • 2.5. Other properties
  • Practice problems
  • References
  • Chapter 3: Processing and manufacturing of polymers
  • 3.1. Introduction
  • 3.2. Extrusion
  • 3.3. Sheets, films, and filaments
  • 3.4. Thermoforming
  • 3.5. Injection molding
  • 3.6. Additive manufacturing
  • Practice problems
  • References
  • Chapter 4: Linear elastic behavior of polymers
  • 4.1. Introduction
  • 4.2. Stress and equilibrium
  • 4.2.1. Plane stress
  • 4.2.2. Simple tension
  • 4.2.3. Simple shear
  • 4.2.4. Hydrostatic stress
  • 4.3. Strain and compatibility
  • 4.3.1. Plane strain
  • 4.4. Linear elastic material behavior
  • 4.4.1. Isotropic materials
  • 4.4.2. Orthotropic materials
  • 4.4.3. Transverse isotropic materials
  • 4.5. Structural component design
  • 4.6. Applied FEA simulation examples
  • Practice problems
  • References
  • Chapter 5: Hyperelastic behavior of polymers
  • 5.1. Introduction
  • 5.2. Theoretical preliminaries
  • 5.2.1. Displacement field
  • 5.2.2. Deformation gradient
  • 5.2.3. Polar decomposition
  • 5.2.4. Strain tensors
  • 5.2.5. Stress tensors
  • 5.3. Stress-strain relationships
  • 5.4. Hyperelastic models
  • 5.4.1. Neo-Hookean model
  • 5.4.2. Mooney-Rivlin model
  • 5.4.3. Yeoh model
  • 5.4.4. Gent model
  • 5.4.5. Ogden model
  • 5.4.6. Ogden Hyper-foam model
  • 5.5. Applications of hyperelastic models in component design
  • Practice problems
  • References
  • Chapter 6: Creep behavior of polymers
  • 6.1. Introduction
  • 6.2. Simple creep models
  • 6.2.1. Maxwell model
  • 6.2.2. Kelvin model
  • 6.2.3. Four-parameters model
  • 6.2.4. Zener model
  • 6.3. Additional creep models
  • 6.3.1. Findley power law
  • 6.3.2. Norton-bailey law
  • 6.3.3. Prandtl-Garofalo law
  • 6.4. Applications of creep in component design
  • 6.5. Applied FEA simulation example
  • Practice problems
  • References
  • Chapter 7: Viscoelastic behavior of polymers
  • 7.1. Introduction
  • 7.2. Theoretical preliminaries
  • 7.2.1. Boltzmann superposition principle
  • 7.2.2. Generalized Maxwell model
  • 7.2.3. Generalized Kelvin model
  • 7.3. Linear viscoelasticity
  • 7.3.1. Small-strain linear viscoelasticity
  • 7.3.2. Large-strain linear viscoelasticity
  • 7.4. Applications of linear viscoelasticity in component design
  • 7.5. Applied FEA simulation example
  • Practice problems
  • References