Applied mechanics of polymers : properties, processing, and behavior /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Applied Mechanics of Polymers: Properties, Processing, and Behavior
- Copyright
- Contents
- Chapter 1: Introduction and background
- 1.1. Introduction
- 1.2. Historical perspective
- 1.3. Type of polymers
- 1.4. Areas of study in polymer science
- 1.4.1. Polymer chemistry
- 1.4.2. Polymer physics
- 1.4.3. Polymer mechanics
- 1.5. Industrial applications of polymers
- 1.6. Closing remarks
- Practice problems
- References
- Chapter 2: General properties of polymers
- 2.1. Introduction
- 2.2. Quasi-static mechanical response
- 2.3. Long-term properties
- 2.3.1. Creep
- 2.3.2. Relaxation
- 2.4. Dynamic properties
- 2.5. Other properties
- Practice problems
- References
- Chapter 3: Processing and manufacturing of polymers
- 3.1. Introduction
- 3.2. Extrusion
- 3.3. Sheets, films, and filaments
- 3.4. Thermoforming
- 3.5. Injection molding
- 3.6. Additive manufacturing
- Practice problems
- References
- Chapter 4: Linear elastic behavior of polymers
- 4.1. Introduction
- 4.2. Stress and equilibrium
- 4.2.1. Plane stress
- 4.2.2. Simple tension
- 4.2.3. Simple shear
- 4.2.4. Hydrostatic stress
- 4.3. Strain and compatibility
- 4.3.1. Plane strain
- 4.4. Linear elastic material behavior
- 4.4.1. Isotropic materials
- 4.4.2. Orthotropic materials
- 4.4.3. Transverse isotropic materials
- 4.5. Structural component design
- 4.6. Applied FEA simulation examples
- Practice problems
- References
- Chapter 5: Hyperelastic behavior of polymers
- 5.1. Introduction
- 5.2. Theoretical preliminaries
- 5.2.1. Displacement field
- 5.2.2. Deformation gradient
- 5.2.3. Polar decomposition
- 5.2.4. Strain tensors
- 5.2.5. Stress tensors
- 5.3. Stress-strain relationships
- 5.4. Hyperelastic models
- 5.4.1. Neo-Hookean model
- 5.4.2. Mooney-Rivlin model
- 5.4.3. Yeoh model
- 5.4.4. Gent model
- 5.4.5. Ogden model
- 5.4.6. Ogden Hyper-foam model
- 5.5. Applications of hyperelastic models in component design
- Practice problems
- References
- Chapter 6: Creep behavior of polymers
- 6.1. Introduction
- 6.2. Simple creep models
- 6.2.1. Maxwell model
- 6.2.2. Kelvin model
- 6.2.3. Four-parameters model
- 6.2.4. Zener model
- 6.3. Additional creep models
- 6.3.1. Findley power law
- 6.3.2. Norton-bailey law
- 6.3.3. Prandtl-Garofalo law
- 6.4. Applications of creep in component design
- 6.5. Applied FEA simulation example
- Practice problems
- References
- Chapter 7: Viscoelastic behavior of polymers
- 7.1. Introduction
- 7.2. Theoretical preliminaries
- 7.2.1. Boltzmann superposition principle
- 7.2.2. Generalized Maxwell model
- 7.2.3. Generalized Kelvin model
- 7.3. Linear viscoelasticity
- 7.3.1. Small-strain linear viscoelasticity
- 7.3.2. Large-strain linear viscoelasticity
- 7.4. Applications of linear viscoelasticity in component design
- 7.5. Applied FEA simulation example
- Practice problems
- References