Cargando…

Nucleation of water : from fundamental science to atmospheric and additional applications /

Nucleation of Water: From Fundamental Science to Atmospheric and Additional Applications provides a comprehensive accounting of the current state-of-the-art regarding the nucleation of water. It covers vapor-liquid, liquid-vapor, liquid-ice and vapor-ice transitions and describes basic kinetic and t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Laaksonen, Ari (Autor), Malila, Jussi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Nucleation of Water
  • Copyright
  • Contents
  • About the authors
  • Preface
  • Acknowledgment
  • Nomenclature
  • 1 Introduction
  • 1.1 On nucleation of water
  • 1.2 A brief history
  • 1.3 About this book
  • References
  • 2 Physico-chemical concepts
  • 2.1 Thermodynamic potentials and ensembles
  • 2.1.1 Energy, work, and entropy
  • 2.1.2 Thermodynamic potentials
  • 2.1.2.1 Gibbs-Duhem equation(s)
  • 2.1.2.2 Maxwell relations
  • 2.1.2.3 Surface thermodynamics
  • 2.1.3 Conditions for equilibrium
  • 2.1.3.1 Clausius-Clapeyron equation
  • 2.1.3.2 Kelvin equation
  • 2.1.3.3 The phase rule and the limits of thermodynamics
  • 2.1.4 Ensembles
  • 2.1.4.1 Microcanonical ensemble
  • 2.1.4.2 Canonical ensemble
  • 2.1.4.3 Grand canonical ensemble
  • 2.2 Thermodynamics of gas and liquid
  • 2.2.1 Equations-of-state
  • 2.2.2 Phase equilibrium
  • 2.3 Kinetics
  • 2.3.1 Kinetic theory of gases
  • 2.3.1.1 Maxwell-Boltzmann distribution
  • 2.3.1.2 Beyond ideal gas
  • 2.3.2 The principle of detailed balance and the law of mass action
  • 2.4 Further reading
  • References
  • 3 Properties of water and ice
  • 3.1 Water molecule and gaseous water
  • 3.2 Liquid and amorphous water
  • 3.2.1 Equilibrium vapor pressure
  • 3.2.2 Latent heat of vaporization
  • 3.2.3 Latent heat of fusion
  • 3.2.4 Density
  • 3.2.5 Surface tension
  • 3.2.6 Isothermal compressibility
  • 3.3 Ice
  • 3.3.1 Equilibrium vapor pressure
  • 3.3.2 Latent heat of sublimation
  • 3.3.3 Density
  • 3.3.4 Interfacial and surface tension
  • 3.4 Mixture properties
  • References
  • 4 Homogeneous gas-liquid nucleation theory
  • 4.1 General features of gas-liquid nucleation
  • 4.2 Nucleation kinetics
  • 4.3 Nucleation thermodynamics
  • 4.4 Nucleation theorems
  • 4.5 Classical nucleation theory
  • 4.5.1 Self-consistency corrections
  • 4.6 Scaling model for the critical clusters.
  • 4.7 Size dependence of the surface tension
  • 4.8 Semiphenomenological nucleation theory
  • 4.9 Nucleation models based on corresponding states correlations
  • References
  • 5 Homogeneous gas-liquid nucleation experiments
  • 5.1 Nucleation experiments
  • 5.2 Diffusion chambers
  • 5.3 Expansion chambers
  • 5.4 Experimental results and comparison with theories
  • References
  • 6 Simulations and molecular-based theories
  • 6.1 Molecular approaches to nucleation
  • 6.1.1 Water models
  • 6.1.1.1 Rigid water models
  • 6.1.1.2 Coarse-grained water models
  • 6.1.1.3 Flexible and polarizable water models
  • 6.2 Density functional theory of nucleation
  • 6.2.1 The Lennard-Jones fluid
  • 6.2.2 Other model fluids
  • 6.2.3 Square gradient approximation
  • 6.2.4 Diffuse interface theory
  • 6.3 Molecular simulation
  • 6.3.1 Molecular dynamics
  • 6.3.2 Monte Carlo
  • 6.4 Quantum chemistry
  • 6.5 Comparison with experiments and theories
  • References
  • 7 Binary and multicomponent gas-liquid nucleation
  • 7.1 Multicomponent gas-liquid nucleation
  • 7.2 Nucleation kinetics
  • 7.3 Nucleation thermodynamics
  • 7.4 Nucleation theorems
  • 7.5 Classical binary nucleation theory
  • 7.6 Semi-phenomenological binary nucleation theory
  • 7.7 Density functional binary nucleation theory
  • 7.8 Water-surfactant nucleation
  • 7.9 Nucleation of sulfuric acid and water
  • 7.10 Homogeneous multicomponent nucleation in the atmosphere
  • References
  • 8 Heterogeneous nucleation of water vapor
  • 8.1 Heterogeneous nucleation
  • 8.2 Contact angle and solid surface tensions
  • 8.3 Adsorption
  • 8.4 Adsorption nucleation theory
  • 8.5 Classical heterogeneous nucleation theory
  • 8.6 Ion-induced nucleation
  • 8.7 Comparison of experimental results and theoretical predictions
  • 8.8 Dropwise condensation
  • References
  • 9 Cloud drop nucleation
  • 9.1 �Khler theory.
  • 9.2 Particles with insoluble inclusions
  • 9.3 Deliquescence and efflorescence
  • 9.4 Kappa-�Khler model
  • 9.5 Slightly soluble substances
  • 9.6 Insoluble cloud condensation nuclei
  • 9.6.1 Insoluble cloud condensation nuclei with soluble impurities
  • 9.6.2 A note on the generalized �Khler equation(s)
  • 9.6.3 Insoluble nuclei with fractal surfaces
  • 9.7 Surfactant effects
  • 9.7.1 Film-forming substances
  • 9.7.2 Surface enrichment or phase separation?
  • 9.8 Co-condensation of soluble gases
  • 9.9 Laboratory experiments
  • 9.10 Atmospheric observations
  • References
  • 10 Ice nucleation
  • 10.1 Ice nucleation and freezing
  • 10.2 Homogeneous freezing in pure water
  • 10.3 Condensation freezing
  • 10.4 Homogeneous freezing in solution
  • 10.5 Immersion freezing
  • 10.6 Deposition nucleation
  • 10.7 Contact nucleation
  • 10.8 Nucleation in and out of pores
  • 10.8.1 Pore filling
  • 10.8.2 Freezing inside pores
  • 10.8.3 Out-of-pore nucleation
  • 10.9 Ice nucleus types
  • 10.10 Cirrus cloud formation
  • 10.11 Freezing in mixed-phase and rainclouds
  • 10.12 Cloud seeding
  • 10.13 Polar stratospheric cloud formation
  • 10.13.1 Thermodynamics of hydrates
  • 10.13.2 Freezing of stratospheric liquid droplets
  • 10.13.3 Heterogeneous nucleation
  • 10.14 Frost nucleation
  • References
  • 11 Bubble nucleation
  • 11.1 Cavitation and boiling
  • 11.2 Thermodynamics
  • 11.3 Kinetics
  • 11.4 Third nucleation theorem
  • 11.5 Heterogeneous bubble nucleation
  • 11.6 Nucleation of dissolved gases
  • 11.7 Experiments of cavitation and boiling in water
  • 11.8 Cavitation and boiling in the Earth system
  • 11.9 Applications
  • 11.9.1 Biomedical applications
  • 11.9.2 Engineering systems
  • 11.9.3 Food and beverages
  • References
  • Index
  • Back Cover.