Nucleation of water : from fundamental science to atmospheric and additional applications /
Nucleation of Water: From Fundamental Science to Atmospheric and Additional Applications provides a comprehensive accounting of the current state-of-the-art regarding the nucleation of water. It covers vapor-liquid, liquid-vapor, liquid-ice and vapor-ice transitions and describes basic kinetic and t...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Nucleation of Water
- Copyright
- Contents
- About the authors
- Preface
- Acknowledgment
- Nomenclature
- 1 Introduction
- 1.1 On nucleation of water
- 1.2 A brief history
- 1.3 About this book
- References
- 2 Physico-chemical concepts
- 2.1 Thermodynamic potentials and ensembles
- 2.1.1 Energy, work, and entropy
- 2.1.2 Thermodynamic potentials
- 2.1.2.1 Gibbs-Duhem equation(s)
- 2.1.2.2 Maxwell relations
- 2.1.2.3 Surface thermodynamics
- 2.1.3 Conditions for equilibrium
- 2.1.3.1 Clausius-Clapeyron equation
- 2.1.3.2 Kelvin equation
- 2.1.3.3 The phase rule and the limits of thermodynamics
- 2.1.4 Ensembles
- 2.1.4.1 Microcanonical ensemble
- 2.1.4.2 Canonical ensemble
- 2.1.4.3 Grand canonical ensemble
- 2.2 Thermodynamics of gas and liquid
- 2.2.1 Equations-of-state
- 2.2.2 Phase equilibrium
- 2.3 Kinetics
- 2.3.1 Kinetic theory of gases
- 2.3.1.1 Maxwell-Boltzmann distribution
- 2.3.1.2 Beyond ideal gas
- 2.3.2 The principle of detailed balance and the law of mass action
- 2.4 Further reading
- References
- 3 Properties of water and ice
- 3.1 Water molecule and gaseous water
- 3.2 Liquid and amorphous water
- 3.2.1 Equilibrium vapor pressure
- 3.2.2 Latent heat of vaporization
- 3.2.3 Latent heat of fusion
- 3.2.4 Density
- 3.2.5 Surface tension
- 3.2.6 Isothermal compressibility
- 3.3 Ice
- 3.3.1 Equilibrium vapor pressure
- 3.3.2 Latent heat of sublimation
- 3.3.3 Density
- 3.3.4 Interfacial and surface tension
- 3.4 Mixture properties
- References
- 4 Homogeneous gas-liquid nucleation theory
- 4.1 General features of gas-liquid nucleation
- 4.2 Nucleation kinetics
- 4.3 Nucleation thermodynamics
- 4.4 Nucleation theorems
- 4.5 Classical nucleation theory
- 4.5.1 Self-consistency corrections
- 4.6 Scaling model for the critical clusters.
- 4.7 Size dependence of the surface tension
- 4.8 Semiphenomenological nucleation theory
- 4.9 Nucleation models based on corresponding states correlations
- References
- 5 Homogeneous gas-liquid nucleation experiments
- 5.1 Nucleation experiments
- 5.2 Diffusion chambers
- 5.3 Expansion chambers
- 5.4 Experimental results and comparison with theories
- References
- 6 Simulations and molecular-based theories
- 6.1 Molecular approaches to nucleation
- 6.1.1 Water models
- 6.1.1.1 Rigid water models
- 6.1.1.2 Coarse-grained water models
- 6.1.1.3 Flexible and polarizable water models
- 6.2 Density functional theory of nucleation
- 6.2.1 The Lennard-Jones fluid
- 6.2.2 Other model fluids
- 6.2.3 Square gradient approximation
- 6.2.4 Diffuse interface theory
- 6.3 Molecular simulation
- 6.3.1 Molecular dynamics
- 6.3.2 Monte Carlo
- 6.4 Quantum chemistry
- 6.5 Comparison with experiments and theories
- References
- 7 Binary and multicomponent gas-liquid nucleation
- 7.1 Multicomponent gas-liquid nucleation
- 7.2 Nucleation kinetics
- 7.3 Nucleation thermodynamics
- 7.4 Nucleation theorems
- 7.5 Classical binary nucleation theory
- 7.6 Semi-phenomenological binary nucleation theory
- 7.7 Density functional binary nucleation theory
- 7.8 Water-surfactant nucleation
- 7.9 Nucleation of sulfuric acid and water
- 7.10 Homogeneous multicomponent nucleation in the atmosphere
- References
- 8 Heterogeneous nucleation of water vapor
- 8.1 Heterogeneous nucleation
- 8.2 Contact angle and solid surface tensions
- 8.3 Adsorption
- 8.4 Adsorption nucleation theory
- 8.5 Classical heterogeneous nucleation theory
- 8.6 Ion-induced nucleation
- 8.7 Comparison of experimental results and theoretical predictions
- 8.8 Dropwise condensation
- References
- 9 Cloud drop nucleation
- 9.1 �Khler theory.
- 9.2 Particles with insoluble inclusions
- 9.3 Deliquescence and efflorescence
- 9.4 Kappa-�Khler model
- 9.5 Slightly soluble substances
- 9.6 Insoluble cloud condensation nuclei
- 9.6.1 Insoluble cloud condensation nuclei with soluble impurities
- 9.6.2 A note on the generalized �Khler equation(s)
- 9.6.3 Insoluble nuclei with fractal surfaces
- 9.7 Surfactant effects
- 9.7.1 Film-forming substances
- 9.7.2 Surface enrichment or phase separation?
- 9.8 Co-condensation of soluble gases
- 9.9 Laboratory experiments
- 9.10 Atmospheric observations
- References
- 10 Ice nucleation
- 10.1 Ice nucleation and freezing
- 10.2 Homogeneous freezing in pure water
- 10.3 Condensation freezing
- 10.4 Homogeneous freezing in solution
- 10.5 Immersion freezing
- 10.6 Deposition nucleation
- 10.7 Contact nucleation
- 10.8 Nucleation in and out of pores
- 10.8.1 Pore filling
- 10.8.2 Freezing inside pores
- 10.8.3 Out-of-pore nucleation
- 10.9 Ice nucleus types
- 10.10 Cirrus cloud formation
- 10.11 Freezing in mixed-phase and rainclouds
- 10.12 Cloud seeding
- 10.13 Polar stratospheric cloud formation
- 10.13.1 Thermodynamics of hydrates
- 10.13.2 Freezing of stratospheric liquid droplets
- 10.13.3 Heterogeneous nucleation
- 10.14 Frost nucleation
- References
- 11 Bubble nucleation
- 11.1 Cavitation and boiling
- 11.2 Thermodynamics
- 11.3 Kinetics
- 11.4 Third nucleation theorem
- 11.5 Heterogeneous bubble nucleation
- 11.6 Nucleation of dissolved gases
- 11.7 Experiments of cavitation and boiling in water
- 11.8 Cavitation and boiling in the Earth system
- 11.9 Applications
- 11.9.1 Biomedical applications
- 11.9.2 Engineering systems
- 11.9.3 Food and beverages
- References
- Index
- Back Cover.