Cargando…

Electrochemical biosensors : applications in diagnostics, therapeutics, environment, and food management /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Singh, Pranveer (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Electrochemical Biosensors: Applications in Diagnostics, Therapeutics, Environment and Food Management
  • Copyright
  • Contents
  • Preface
  • Chapter 1 Electrochemical biosensing: Progress and perspectives
  • 1.1 Introduction
  • 1.2 Biosensors
  • 1.3 Optical biosensors
  • 1.4 Mechanical biosensors
  • 1.5 Electrochemical sensors
  • 1.5.1 Components of electrochemical sensors: Electrodes, transducers, or detector device
  • 1.5.2 Electrical interface
  • 1.5.3 Recognition receptors
  • 1.5.4 Antibodies
  • 1.5.5 Aptamers
  • 1.5.6 DNA, enzymes, and artificial receptors
  • 1.6 Development and evolution of electrochemical sensors
  • 1.6.1 Screen-printed electrodes (SPE)
  • 1.6.2 Synthetic receptors
  • 1.7 Portability and miniaturization: Microfluidics in electrochemical biosensors
  • 1.7.1 Lab-on-chip (LoC) devices
  • 1.7.2 Lab-in-briefcase (LiB)
  • 1.7.3 Advantage of microfluidics integrated with electrochemical biosensor
  • 1.8 Types of electrochemical biosensors based on electric signals
  • 1.8.1 Amperometric sensors
  • 1.8.2 Amperometric immunosensors
  • 1.8.3 Potentiometric sensors
  • 1.8.4 Potentiometric immunosensors
  • 1.8.5 Impedance sensor
  • 1.8.6 Impedance immunosensors
  • 1.8.7 Conductometric sensors
  • 1.8.8 Capacitive sensors
  • 1.8.9 Gravimetric sensors
  • 1.9 Nanomaterials for electrochemical sensor applications
  • 1.9.1 Nanohybrids
  • 1.9.2 Nanoparticles (NPs)
  • 1.9.3 Carbon-based nanomaterials
  • 1.9.4 Apoferritin nano-vehicles and metal phosphate labels
  • 1.10 Electrochemical immunoassays
  • 1.10.1 Nanomaterials in electrochemical immunosensors
  • 1.11 Conclusions and future perspectives
  • References
  • Chapter 2 Nanomaterial based electrochemical biosensing: Progress and perspectives
  • 2.1 Introduction
  • 2.1.1 Electrochemical immunosensors
  • 2.1.2 Type of electrochemical immunosensors based on signal.
  • 2.1.3 Electrochemical immunoassays
  • 2.1.4 Nanomaterial based electrochemical biosensors
  • 2.2 Types of nanomaterials
  • 2.3 Nanoparticles (NPs)
  • 2.3.1 SPR assays based on nanoparticles (NPs)
  • 2.3.2 Nanoparticle-enhanced SPR-phase imaging (SPR-PI)
  • 2.3.3 Magnetic nanoparticles (MNPs) based SPR assays
  • 2.3.4 Advantages of metal nanoparticles in SPR assays
  • 2.3.5 Surface plasmon-enhanced fluorescence spectroscopy (SPFS) based detection of agricultural toxins
  • 2.3.6 Biofunctionalized metal nanoparticles (NPs)
  • 2.3.7 AuNPs/GO and AuNPs/GCE hybrid based electrochemical immunosensors
  • 2.3.8 AuNPs based sensors for the detection of clinical biomarkers
  • 2.3.9 Colloidal gold-/silver-based electrochemical immunoassay
  • 2.3.10 AuNP based quartz crystal microbalance (QCM) immunosensing
  • 2.3.11 PANIAuNPs based Impedimetric sensor
  • 2.3.12 Multiplexed magneto-immunosensor
  • 2.3.13 Mesoporous metallic structures as labels for electrochemical immunoassays
  • 2.3.14 Metal phosphate NP labels
  • 2.4 Nanomaterials
  • 2.4.1 Au and Ag nanomaterials
  • 2.4.2 Au and ag-based electrochemical immunosensor
  • 2.4.3 Nanomaterial-based enzyme electrodes for the estimation of polyphenols
  • 2.4.4 CID-LSPR using gold nanorods (AuNR) for bio-detection
  • 2.4.5 Other metal nanomaterials (Cu, Pd, Pt)
  • 2.4.6 Carbon-based nanomaterials
  • 2.4.7 Carbon nanotubes (CNTs)
  • 2.4.7.1 CNTs: Clinical biomarker detection
  • 2.4.7.2 CNTs: Detection of polyphenol
  • 2.5 Graphene-based nanomaterials
  • 2.5.1 Graphene oxide (rGO)
  • 2.5.2 Ultrathin graphitic carbon nitride (g-C3N4) nanosheets
  • 2.5.3 2D-graphitic carbon nitride nanosheets (CNNSs)
  • 2.5.4 2D-nanomaterials and 2D-based nanohybrids
  • 2.5.5 Graphene (G)-based composite materials
  • 2.5.6 Graphene-based chronoamperometric genosensor for bio-detection.
  • 2.5.7 Gold-graphene nano-labels for the detection of cancer biomarkers
  • 2.5.8 Graphene-based electrochemical CEA immunosensor
  • 2.5.9 Magnetic graphene-based electrochemical CEA immunosensor
  • 2.5.10 Graphene-based Sandwich immunoassay for the detection of cancer biomarker
  • 2.6 C 60 fullerenes and carbon dots
  • 2.7 Carbon black
  • 2.8 Carbon bucky-paper
  • 2.9 Other carbon materials
  • 2.10 Apoferritin nano-vehicles
  • 2.11 Liposome
  • 2.12 Semiconductor nanomaterials
  • 2.12.1 SiO 2 nanomaterials
  • 2.12.2 Silica nanoparticles
  • 2.12.3 Quantum dots
  • 2.13 Other nanomaterials
  • 2.14 Other labels
  • 2.15 Upconverting nanoparticles (UCNPs)
  • 2.16 Magnetic beads (MBs)
  • 2.17 Conclusion and future outlook
  • References
  • Further reading
  • Chapter 3 Electrochemical biosensors: Biomonitoring of clinically significant biomarkers
  • 3.1 Introduction
  • 3.2 Electrochemical immunosensing for the assessment of circulating biomarkers
  • 3.2.1 Clinical biomarkers
  • 3.2.2 Multiplexed electrochemical immunosensors for the detection of cancer biomarkers
  • 3.2.3 Mesoporous metallic structures
  • 3.2.4 Redox mediators as career tags for the detection of cancer biomarkers
  • 3.2.5 Alternative nanomaterial-based strategies for the detection of cancer biomarkers
  • 3.2.6 Microfluidic device assisted cancer biomarker detection
  • 3.2.7 Nucleic acid-based electrochemical genosensing of circulating biomarkers
  • 3.3 Electrochemical sensing of breast cancer biomarkers
  • 3.3.1 Electrochemical biosensing of gene-specific mutations and miRNAs associated with breast cancer in biofluids
  • 3.3.2 Electrochemical Aptasensors for breast cancer protein circulating biomarkers
  • 3.3.3 Electrochemical peptide-biosensor for the detection of circulating breast cancer protein biomarkers.
  • 3.3.4 Electrochemical biosensing for multiple determination of circulating breast cancer biomarkers
  • 3.4 Electrochemical biosensor for the detection of prostate cancer biomarkers
  • 3.5 Biomarkers for cardiovascular disease
  • 3.5.1 Electrochemical immunosensing of cardiovascular disease biomarkers
  • 3.6 Electrochemical biosensing of other disease biomarkers
  • 3.6.1 Diabetes
  • 3.6.2 Genetic disorder
  • 3.7 Electrochemical genosensors for the neurodegenerative disease biomarkers
  • 3.8 Electrochemical sensors for the detection and biomonitoring of viral and bacterial pathogenic biomarkers
  • 3.8.1 Viral disease biomarkers
  • 3.8.2 Electrochemical genosensing of biomarkers for viral infections
  • 3.8.3 Minimally invasive electrochemical immunosensing of human immunodeficiency virus (HIV)
  • 3.8.4 Pseudorabies virus (PRV)
  • 3.8.5 Influenza (flu) virus
  • 3.8.6 Dengue virus
  • 3.8.7 Human enterovirus 71 (EV71)
  • 3.8.8 Human papillomavirus (hrHPV)
  • 3.8.9 Human norovirus
  • 3.9 Bacterial biomarkers
  • 3.9.1 Electrochemical genosensors for bacterial infection biomarkers
  • 3.9.2 Electrochemical genosensors (sandwich format) for the detection of bacterial pathogens in liquid biopsies
  • 3.9.3 Electrochemical immunosensing of bacterial pathogens in liquid biopsies
  • 3.9.4 Electrochemical immunosensing of invertebrate pathogens in liquid biopsies
  • 3.10 Lab-on-chip and telemedicine
  • 3.11 Optimal electrochemical biosensor characteristics ( Gao and Lu, 2020
  • Huang et al., 2021
  • Zhang et al., 2020
  • ...
  • 3.12 Conclusion and future perspective
  • References
  • Chapter 4 Electrochemical nano-biosensors: Environmental biomonitoring
  • 4.1 Introduction
  • 4.2 Electrochemical biosensors
  • 4.2.1 Electrochemical affinity biosensors
  • 4.3 Nanomaterial engineering for the advancement of electrochemical sensors
  • 4.4 Biomonitoring.