|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1285773546 |
003 |
OCoLC |
005 |
20231120010618.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
211120s2022 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCF
|d N$T
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1285631469
|a 1285673030
|a 1285728144
|
020 |
|
|
|a 9780323910507
|q (electronic bk.)
|
020 |
|
|
|a 0323910505
|q (electronic bk.)
|
020 |
|
|
|z 9780323906326
|
020 |
|
|
|z 032390632X
|
035 |
|
|
|a (OCoLC)1285773546
|z (OCoLC)1285631469
|z (OCoLC)1285673030
|z (OCoLC)1285728144
|
050 |
|
4 |
|a TP159.E37
|
082 |
0 |
4 |
|a 610.28
|2 23
|
100 |
1 |
|
|a Singh, Pranveer,
|e author.
|
245 |
1 |
0 |
|a Electrochemical biosensors :
|b applications in diagnostics, therapeutics, environment, and food management /
|c Pranveer Singh.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2022.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Electrochemical Biosensors: Applications in Diagnostics, Therapeutics, Environment and Food Management -- Copyright -- Contents -- Preface -- Chapter 1 Electrochemical biosensing: Progress and perspectives -- 1.1 Introduction -- 1.2 Biosensors -- 1.3 Optical biosensors -- 1.4 Mechanical biosensors -- 1.5 Electrochemical sensors -- 1.5.1 Components of electrochemical sensors: Electrodes, transducers, or detector device -- 1.5.2 Electrical interface -- 1.5.3 Recognition receptors -- 1.5.4 Antibodies -- 1.5.5 Aptamers -- 1.5.6 DNA, enzymes, and artificial receptors -- 1.6 Development and evolution of electrochemical sensors -- 1.6.1 Screen-printed electrodes (SPE) -- 1.6.2 Synthetic receptors -- 1.7 Portability and miniaturization: Microfluidics in electrochemical biosensors -- 1.7.1 Lab-on-chip (LoC) devices -- 1.7.2 Lab-in-briefcase (LiB) -- 1.7.3 Advantage of microfluidics integrated with electrochemical biosensor -- 1.8 Types of electrochemical biosensors based on electric signals -- 1.8.1 Amperometric sensors -- 1.8.2 Amperometric immunosensors -- 1.8.3 Potentiometric sensors -- 1.8.4 Potentiometric immunosensors -- 1.8.5 Impedance sensor -- 1.8.6 Impedance immunosensors -- 1.8.7 Conductometric sensors -- 1.8.8 Capacitive sensors -- 1.8.9 Gravimetric sensors -- 1.9 Nanomaterials for electrochemical sensor applications -- 1.9.1 Nanohybrids -- 1.9.2 Nanoparticles (NPs) -- 1.9.3 Carbon-based nanomaterials -- 1.9.4 Apoferritin nano-vehicles and metal phosphate labels -- 1.10 Electrochemical immunoassays -- 1.10.1 Nanomaterials in electrochemical immunosensors -- 1.11 Conclusions and future perspectives -- References -- Chapter 2 Nanomaterial based electrochemical biosensing: Progress and perspectives -- 2.1 Introduction -- 2.1.1 Electrochemical immunosensors -- 2.1.2 Type of electrochemical immunosensors based on signal.
|
505 |
8 |
|
|a 2.1.3 Electrochemical immunoassays -- 2.1.4 Nanomaterial based electrochemical biosensors -- 2.2 Types of nanomaterials -- 2.3 Nanoparticles (NPs) -- 2.3.1 SPR assays based on nanoparticles (NPs) -- 2.3.2 Nanoparticle-enhanced SPR-phase imaging (SPR-PI) -- 2.3.3 Magnetic nanoparticles (MNPs) based SPR assays -- 2.3.4 Advantages of metal nanoparticles in SPR assays -- 2.3.5 Surface plasmon-enhanced fluorescence spectroscopy (SPFS) based detection of agricultural toxins -- 2.3.6 Biofunctionalized metal nanoparticles (NPs) -- 2.3.7 AuNPs/GO and AuNPs/GCE hybrid based electrochemical immunosensors -- 2.3.8 AuNPs based sensors for the detection of clinical biomarkers -- 2.3.9 Colloidal gold-/silver-based electrochemical immunoassay -- 2.3.10 AuNP based quartz crystal microbalance (QCM) immunosensing -- 2.3.11 PANIAuNPs based Impedimetric sensor -- 2.3.12 Multiplexed magneto-immunosensor -- 2.3.13 Mesoporous metallic structures as labels for electrochemical immunoassays -- 2.3.14 Metal phosphate NP labels -- 2.4 Nanomaterials -- 2.4.1 Au and Ag nanomaterials -- 2.4.2 Au and ag-based electrochemical immunosensor -- 2.4.3 Nanomaterial-based enzyme electrodes for the estimation of polyphenols -- 2.4.4 CID-LSPR using gold nanorods (AuNR) for bio-detection -- 2.4.5 Other metal nanomaterials (Cu, Pd, Pt) -- 2.4.6 Carbon-based nanomaterials -- 2.4.7 Carbon nanotubes (CNTs) -- 2.4.7.1 CNTs: Clinical biomarker detection -- 2.4.7.2 CNTs: Detection of polyphenol -- 2.5 Graphene-based nanomaterials -- 2.5.1 Graphene oxide (rGO) -- 2.5.2 Ultrathin graphitic carbon nitride (g-C3N4) nanosheets -- 2.5.3 2D-graphitic carbon nitride nanosheets (CNNSs) -- 2.5.4 2D-nanomaterials and 2D-based nanohybrids -- 2.5.5 Graphene (G)-based composite materials -- 2.5.6 Graphene-based chronoamperometric genosensor for bio-detection.
|
505 |
8 |
|
|a 2.5.7 Gold-graphene nano-labels for the detection of cancer biomarkers -- 2.5.8 Graphene-based electrochemical CEA immunosensor -- 2.5.9 Magnetic graphene-based electrochemical CEA immunosensor -- 2.5.10 Graphene-based Sandwich immunoassay for the detection of cancer biomarker -- 2.6 C 60 fullerenes and carbon dots -- 2.7 Carbon black -- 2.8 Carbon bucky-paper -- 2.9 Other carbon materials -- 2.10 Apoferritin nano-vehicles -- 2.11 Liposome -- 2.12 Semiconductor nanomaterials -- 2.12.1 SiO 2 nanomaterials -- 2.12.2 Silica nanoparticles -- 2.12.3 Quantum dots -- 2.13 Other nanomaterials -- 2.14 Other labels -- 2.15 Upconverting nanoparticles (UCNPs) -- 2.16 Magnetic beads (MBs) -- 2.17 Conclusion and future outlook -- References -- Further reading -- Chapter 3 Electrochemical biosensors: Biomonitoring of clinically significant biomarkers -- 3.1 Introduction -- 3.2 Electrochemical immunosensing for the assessment of circulating biomarkers -- 3.2.1 Clinical biomarkers -- 3.2.2 Multiplexed electrochemical immunosensors for the detection of cancer biomarkers -- 3.2.3 Mesoporous metallic structures -- 3.2.4 Redox mediators as career tags for the detection of cancer biomarkers -- 3.2.5 Alternative nanomaterial-based strategies for the detection of cancer biomarkers -- 3.2.6 Microfluidic device assisted cancer biomarker detection -- 3.2.7 Nucleic acid-based electrochemical genosensing of circulating biomarkers -- 3.3 Electrochemical sensing of breast cancer biomarkers -- 3.3.1 Electrochemical biosensing of gene-specific mutations and miRNAs associated with breast cancer in biofluids -- 3.3.2 Electrochemical Aptasensors for breast cancer protein circulating biomarkers -- 3.3.3 Electrochemical peptide-biosensor for the detection of circulating breast cancer protein biomarkers.
|
505 |
8 |
|
|a 3.3.4 Electrochemical biosensing for multiple determination of circulating breast cancer biomarkers -- 3.4 Electrochemical biosensor for the detection of prostate cancer biomarkers -- 3.5 Biomarkers for cardiovascular disease -- 3.5.1 Electrochemical immunosensing of cardiovascular disease biomarkers -- 3.6 Electrochemical biosensing of other disease biomarkers -- 3.6.1 Diabetes -- 3.6.2 Genetic disorder -- 3.7 Electrochemical genosensors for the neurodegenerative disease biomarkers -- 3.8 Electrochemical sensors for the detection and biomonitoring of viral and bacterial pathogenic biomarkers -- 3.8.1 Viral disease biomarkers -- 3.8.2 Electrochemical genosensing of biomarkers for viral infections -- 3.8.3 Minimally invasive electrochemical immunosensing of human immunodeficiency virus (HIV) -- 3.8.4 Pseudorabies virus (PRV) -- 3.8.5 Influenza (flu) virus -- 3.8.6 Dengue virus -- 3.8.7 Human enterovirus 71 (EV71) -- 3.8.8 Human papillomavirus (hrHPV) -- 3.8.9 Human norovirus -- 3.9 Bacterial biomarkers -- 3.9.1 Electrochemical genosensors for bacterial infection biomarkers -- 3.9.2 Electrochemical genosensors (sandwich format) for the detection of bacterial pathogens in liquid biopsies -- 3.9.3 Electrochemical immunosensing of bacterial pathogens in liquid biopsies -- 3.9.4 Electrochemical immunosensing of invertebrate pathogens in liquid biopsies -- 3.10 Lab-on-chip and telemedicine -- 3.11 Optimal electrochemical biosensor characteristics ( Gao and Lu, 2020 -- Huang et al., 2021 -- Zhang et al., 2020 -- ... -- 3.12 Conclusion and future perspective -- References -- Chapter 4 Electrochemical nano-biosensors: Environmental biomonitoring -- 4.1 Introduction -- 4.2 Electrochemical biosensors -- 4.2.1 Electrochemical affinity biosensors -- 4.3 Nanomaterial engineering for the advancement of electrochemical sensors -- 4.4 Biomonitoring.
|
650 |
|
0 |
|a Electrochemical sensors.
|
650 |
|
0 |
|a Biosensors.
|
650 |
|
2 |
|a Biosensing Techniques
|0 (DNLM)D015374
|
650 |
|
6 |
|a D�etecteurs �electrochimiques.
|0 (CaQQLa)201-0180574
|
650 |
|
6 |
|a Biocapteurs.
|0 (CaQQLa)201-0165323
|
650 |
|
7 |
|a Biosensors
|2 fast
|0 (OCoLC)fst00832703
|
650 |
|
7 |
|a Electrochemical sensors
|2 fast
|0 (OCoLC)fst00906367
|
776 |
0 |
8 |
|i Print version:
|z 032390632X
|z 9780323906326
|w (OCoLC)1258782937
|
776 |
0 |
8 |
|i Print version:
|a Singh, Pranveer.
|t Electrochemical biosensors
|z 9780323906326
|w (OCoLC)1272885700
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323906326
|z Texto completo
|