Cargando…

Storage systems : organization, performance, coding, reliability, and their data processing /

Storage Systems: Organization, Performance, Coding, Reliability and Their Data Processing was motivated by the 1988 Redundant Array of Inexpensive/Independent Disks proposal to replace large form factor mainframe disks with an array of commodity disks. Disk loads are balanced by striping data into s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Thomasian, Alexander, 1945- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Morgan Kaufmann, an imprint of Elsevier, [2022]
Edición:First edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1285716218
003 OCoLC
005 20231120010618.0
006 m o d
007 cr cnu---unuuu
008 211119s2022 mau ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d UKMGB  |d N$T  |d YDXIT  |d OCLCO  |d ORMDA  |d OPELS  |d OCLCO  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO 
015 |a GBC1D7380  |2 bnb 
016 7 |a 020300100  |2 Uk 
019 |a 1285688932 
020 |a 9780323908092  |q (electronic book) 
020 |a 0323908098  |q (electronic book) 
020 |a 9780323907965  |q (electronic bk.) 
020 |a 0323907962  |q (electronic bk.) 
035 |a (OCoLC)1285716218  |z (OCoLC)1285688932 
050 4 |a TK7895.M4  |b T56 2022 
082 0 4 |a 004.5  |2 23 
100 1 |a Thomasian, Alexander,  |d 1945-  |e author. 
245 1 0 |a Storage systems :  |b organization, performance, coding, reliability, and their data processing /  |c Alexander Thomasian. 
250 |a First edition. 
264 1 |a Cambridge, MA :  |b Morgan Kaufmann, an imprint of Elsevier,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Introduction 2. Storage Technologies and Their Data 3. Disk Drive Data Placement and Scheduling 4. Mirrored & Hybrid Arrays 5. Redundant Arrays of Independent Disks -- RAID 6. Coding for Multiple Disk Failures 7. Saving Power in Disks, Flash Memories, and Servers 8. Database Parallelism, Big Data and Analytics, Deep Learning 9. Structured, Unstructured, and Diverse Databases 10. Heterogeneous Disk Arrays -- HDAs 11. Hierarchical RAID -- HRAID 12. Conclusions Appendix</p> 
588 0 |a Online resource; title from digital title page (viewed on November 22, 2021). 
520 |a Storage Systems: Organization, Performance, Coding, Reliability and Their Data Processing was motivated by the 1988 Redundant Array of Inexpensive/Independent Disks proposal to replace large form factor mainframe disks with an array of commodity disks. Disk loads are balanced by striping data into strips--with one strip per disk-- and storage reliability is enhanced via replication or erasure coding, which at best dedicates k strips per stripe to tolerate k disk failures. Flash memories have resulted in a paradigm shift with Solid State Drives (SSDs) replacing Hard Disk Drives (HDDs) for high performance applications. RAID and Flash have resulted in the emergence of new storage companies, namely EMC, NetApp, SanDisk, and Purestorage, and a multibillion-dollar storage market. Key new conferences and publications are reviewed in this book. The goal of the book is to expose students, researchers, and IT professionals to the more important developments in storage systems, while covering the evolution of storage technologies, traditional and novel databases, and novel sources of data. We describe several prototypes: FAWN at CMU, RAMCloud at Stanford, and Lightstore at MIT; Oracle's Exadata, AWS' Aurora, Alibaba's PolarDB, Fungible Data Center; and author's paper designs for cloud storage, namely heterogeneous disk arrays and hierarchical RAID. Surveys storage technologies and lists sources of data: measurements, text, audio, images, and video Familiarizes with paradigms to improve performance: caching, prefetching, log-structured file systems, and merge-trees (LSMs) Describes RAID organizations and analyzes their performance and reliability Conserves storage via data compression, deduplication, compaction, and secures data via encryption Specifies implications of storage technologies on performance and power consumption Exemplifies database parallelism for big data, analytics, deep learning via multicore CPUs, GPUs, FPGAs, and ASICs, e.g., Google's Tensor Processing Units. 
650 0 |a Computer storage devices. 
650 2 |a Computer Storage Devices  |0 (DNLM)D016248 
650 6 |a Ordinateurs  |x M&#xFFFD;emoires.  |0 (CaQQLa)201-0023480 
650 7 |a Computer storage devices  |2 fast  |0 (OCoLC)fst00872634 
776 0 8 |i Print version:  |a Thomasian, Alexander, 1945-  |t Storage systems.  |d Amsterdam : Morgan Kaufmann, 2021  |z 9780323907965  |w (OCoLC)1264404081 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323907965  |z Texto completo