Porous silicon for biomedical applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Duxford :
Woodhead Publishing,
2021.
|
Edición: | Second edition. |
Colección: | Woodhead Publishing series in biomaterials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Porous Silicon for Biomedical Applications
- Copyright
- Contents
- Contributors
- Preface
- References
- Introduction
- References
- Part 1: Fundamentals of porous silicon for biomedical applications
- Chapter 1: Thermal stabilization of porous silicon
- 1.1. Introduction
- 1.2. Thermal oxidation
- 1.3. Thermal carbonization
- 1.4. Thermal nitridation
- 1.5. Structural effects of thermal annealing
- 1.6. Analytical aspects
- 1.7. Conclusions and future trends
- References
- Chapter 2: Thermal properties of nanoporous silicon materials
- 2.1. Introduction
- 2.2. Thermal constants of PSi
- 2.2.1. Thermal characterizations of nanostructures
- 2.2.2. Experimental and theoretical analyses
- 2.3. Application studies
- 2.3.1. Survey
- 2.3.2. Thermo-acoustic effect
- 2.3.2.1. Device structure and emission mechanism
- 2.3.2.2. Frequency response
- 2.3.2.3. Pulsed operation
- 2.3.3. Applications of thermos-acoustic device
- 2.3.3.1. Digital speaker
- 2.3.3.2. Object sensing in air
- 2.3.3.3. Noncontact actuator
- 2.3.3.4. Bio-acoustics
- 2.3.3.5. Chemical reactor array
- 2.4. Conclusion and future trends
- Acknowledgments
- References
- Chapter 3: Photochemical and nonthermal chemical modification of porous silicon
- 3.1. Introduction
- 3.2. Hydrosilylation and controlled surface modification of Si
- 3.3. Surface photochemistry: An introduction
- 3.3.1. The nature of electronic levels at interfaces
- 3.3.2. Initiating photochemistry at silicon surfaces
- 3.4. Photochemical mechanisms on H/Si surfaces
- 3.5. Laser ablation
- 3.6. Electrochemical grafting
- 3.7. Sonochemistry
- 3.8. Microwave-induced chemistry
- 3.9. Mechanochemistry
- 3.10. Conclusions and future trends
- References
- Chapter 4: Protein-modified porous silicon optical devices for biosensing
- 4.1. Introduction.
- 4.2. Proteins on surfaces
- 4.2.1. Proteins and other biomolecules
- 4.2.2. Biofunctionalization of the porous silicon surface
- 4.3. Porous silicon monolayers and multilayers
- 4.3.1. Hybrid graphene oxide-porous silicon-based transducer
- 4.4. Characterization methods
- 4.4.1. Spectroscopic reflectometry (FFT theory)
- 4.4.2. Photoluminescence spectroscopy
- 4.4.3. Water contact angle
- 4.4.4. Scanning electron microscopy
- 4.4.5. Atomic force microscopy
- 4.5. Protein-modified PSi
- 4.5.1. Protein infiltration in PSi
- 4.5.2. Biofunctionalization of PSi and GO-PSi platforms for optical sensing
- 4.6. Conclusions and future trends
- Acknowledgments
- References
- Chapter 5: Biocompatibility of porous silicon
- 5.1. Biocompatibility
- 5.1.1. Definition
- 5.1.2. Porous silicon bioactive properties
- 5.2. Biodegradability
- 5.2.1. Degradation rate for biomedical applications
- 5.2.2. The fate of orthosilicic acid in the human body
- 5.2.3. The link between PSi porosity and biocompatibility/biodegradability
- 5.3. Cytotoxicity
- 5.3.1. Cytotoxicity of PSi
- 5.3.2. The link between PSi particle size and cytocompatibility
- 5.3.2.1. THCPSi particles
- 5.3.2.2. TOPSi particles
- 5.4. The fate of porous silicon in the body
- 5.4.1. Retention and excretion of PSi particles
- 5.4.1.1. Plasma-mimetic fluid
- 5.4.1.2. Gastrointestinal tract
- 5.4.1.3. Tumor-associated cells
- 5.4.2. Metabolism and degradation of PSi particles in different organs
- 5.4.2.1. Eye
- 5.4.2.2. Liver and spleen
- 5.4.2.3. Other organs in systemic circulation
- 5.5. In vivo behavior of PSi implants
- 5.5.1. BrachySil (now OncoSil)
- 5.5.2. PSi/polymer composites
- 5.5.3. PSi membranes
- 5.6. Porous silicon for biomimetic reactors and biohybrid systems
- 5.6.1. Biomimetic reactors
- 5.6.2. Biohybrid systems.
- 5.6.2.1. TCPSi and THCPSi particles
- 5.6.2.2. TOPSi particles
- 5.7. Porous silicon for the design of targeted nanocarriers
- 5.8. Porous silicon for radiation theranostics
- 5.9. Porous silicon for tissue engineering
- 5.10. Missing links
- 5.10.1. Standardization
- 5.10.2. In vitro studies
- 5.10.3. In vivo studies
- 5.11. Conclusion
- References
- Part 2: Porous silicon for bioimaging and biosensing applications
- Chapter 6: Optical properties of porous silicon materials
- 6.1. Introduction
- 6.2. Morphology of PSi
- 6.3. Effective medium models
- 6.3.1. Maxwell-Garnett (MG) model
- 6.3.2. Bruggeman model
- 6.3.3. Looyenga-Landau-Lifshitz (LLL) model
- 6.3.4. Bergman's representation
- 6.4. Optical constants of nano-PSi
- 6.5. Stability of the optical properties of nano-PSi
- 6.6. Multilayer structures
- 6.7. Optical applications of PSi optical filters
- 6.7.1. Filtered light-emitting devices
- 6.7.2. Filtered photodetectors
- 6.7.3. Chemical sensors
- 6.7.4. Biosensors
- 6.8. Conclusion and future trends
- References
- Chapter 7: Radiolabeled porous silicon for nuclear imaging and theranostic applications
- 7.1. Introduction
- 7.2. Methods for tracing drug delivery
- 7.2.1. Diagnostic methods
- 7.2.2. Theranostics
- 7.2.3. Imaging in drug development
- 7.3. Radiolabeled PSi materials
- 7.3.1. Methods of preparation
- 7.3.2. Evaluation of biodistribution
- 7.3.3. Evaluation of targeted accumulation
- 7.3.3.1. Heart targeted PSi nanoparticles
- 7.3.3.2. Tumor-targeted PSi nanoparticles
- 7.3.4. Carrier for therapeutic radionuclides
- 7.4. Conclusions and future trends
- References
- Chapter 8: Porous silicon for targeting microorganisms: Detection and treatment
- 8.1. Introduction
- 8.2. Advancements in microorganism detection
- 8.2.1. Biosensing of bacteria within ``real samples��.
- 8.2.2. Sensitivity and signal enhancement
- 8.2.3. Monitoring bacterial behavior
- 8.3. PSi as an antibacterial agent
- 8.4. Conclusions and future trends
- References
- Chapter 9: Porous silicon biosensors for DNA sensing
- 9.1. Introduction
- 9.1.1. DNA sensing background
- 9.1.2. Important metrics for DNA sensing
- 9.1.2.1. Sensitivity and detection limit
- 9.1.2.2. Selectivity
- 9.1.2.3. Sensor response time
- 9.1.2.4. Limitations on sequence length
- 9.1.3. Other existing techniques for DNA detection and sequencing
- 9.2. PSi sensor preparation
- 9.2.1. Functionalization techniques
- 9.2.2. DNA attachment approaches: Direct infiltration of pre-synthesized DNA or in situ DNA synthesis
- 9.3. PSi DNA sensor structures, measurement techniques, and sensitivity
- 9.3.1. Optical transduction
- 9.3.1.1. Reflection spectroscopy
- Single layer interferometers
- Waveguides and other guided wave structures
- Bragg mirrors and microcavities
- Multilayer particles
- 9.3.1.2. Absorption spectroscopy
- 9.3.1.3. Photoluminescence (PL) and fluorescence
- Single-layer
- Microcavity
- 9.3.1.4. Surface enhanced Raman spectroscopy (SERS)
- 9.3.2. Electrical and electrochemical transduction
- 9.4. Corrosion of PSi DNA sensors
- 9.5. Effect of pore size on DNA infiltration and detection
- 9.6. Control of DNA surface density in nanoscale pores
- 9.7. Kinetics for real-time sensing
- 9.8. Conclusions and future trends
- References
- Chapter 10: Near-infrared imaging for in vivo assessment of porous silicon-based materials
- 10.1. Introduction
- 10.2. Fabrication of PSi-based composited materials with NIR PL
- 10.3. Assessment of the fate of PSi-based composited materials using in vivo imaging
- 10.4. Monitoring the physiological microenvironments of pathological tissues in vivo
- 10.5. Conclusions and future perspectives.