Cargando…

Porous silicon for biomedical applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Santos, H�elder A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford : Woodhead Publishing, 2021.
Edición:Second edition.
Colección:Woodhead Publishing series in biomaterials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Porous Silicon for Biomedical Applications
  • Copyright
  • Contents
  • Contributors
  • Preface
  • References
  • Introduction
  • References
  • Part 1: Fundamentals of porous silicon for biomedical applications
  • Chapter 1: Thermal stabilization of porous silicon
  • 1.1. Introduction
  • 1.2. Thermal oxidation
  • 1.3. Thermal carbonization
  • 1.4. Thermal nitridation
  • 1.5. Structural effects of thermal annealing
  • 1.6. Analytical aspects
  • 1.7. Conclusions and future trends
  • References
  • Chapter 2: Thermal properties of nanoporous silicon materials
  • 2.1. Introduction
  • 2.2. Thermal constants of PSi
  • 2.2.1. Thermal characterizations of nanostructures
  • 2.2.2. Experimental and theoretical analyses
  • 2.3. Application studies
  • 2.3.1. Survey
  • 2.3.2. Thermo-acoustic effect
  • 2.3.2.1. Device structure and emission mechanism
  • 2.3.2.2. Frequency response
  • 2.3.2.3. Pulsed operation
  • 2.3.3. Applications of thermos-acoustic device
  • 2.3.3.1. Digital speaker
  • 2.3.3.2. Object sensing in air
  • 2.3.3.3. Noncontact actuator
  • 2.3.3.4. Bio-acoustics
  • 2.3.3.5. Chemical reactor array
  • 2.4. Conclusion and future trends
  • Acknowledgments
  • References
  • Chapter 3: Photochemical and nonthermal chemical modification of porous silicon
  • 3.1. Introduction
  • 3.2. Hydrosilylation and controlled surface modification of Si
  • 3.3. Surface photochemistry: An introduction
  • 3.3.1. The nature of electronic levels at interfaces
  • 3.3.2. Initiating photochemistry at silicon surfaces
  • 3.4. Photochemical mechanisms on H/Si surfaces
  • 3.5. Laser ablation
  • 3.6. Electrochemical grafting
  • 3.7. Sonochemistry
  • 3.8. Microwave-induced chemistry
  • 3.9. Mechanochemistry
  • 3.10. Conclusions and future trends
  • References
  • Chapter 4: Protein-modified porous silicon optical devices for biosensing
  • 4.1. Introduction.
  • 4.2. Proteins on surfaces
  • 4.2.1. Proteins and other biomolecules
  • 4.2.2. Biofunctionalization of the porous silicon surface
  • 4.3. Porous silicon monolayers and multilayers
  • 4.3.1. Hybrid graphene oxide-porous silicon-based transducer
  • 4.4. Characterization methods
  • 4.4.1. Spectroscopic reflectometry (FFT theory)
  • 4.4.2. Photoluminescence spectroscopy
  • 4.4.3. Water contact angle
  • 4.4.4. Scanning electron microscopy
  • 4.4.5. Atomic force microscopy
  • 4.5. Protein-modified PSi
  • 4.5.1. Protein infiltration in PSi
  • 4.5.2. Biofunctionalization of PSi and GO-PSi platforms for optical sensing
  • 4.6. Conclusions and future trends
  • Acknowledgments
  • References
  • Chapter 5: Biocompatibility of porous silicon
  • 5.1. Biocompatibility
  • 5.1.1. Definition
  • 5.1.2. Porous silicon bioactive properties
  • 5.2. Biodegradability
  • 5.2.1. Degradation rate for biomedical applications
  • 5.2.2. The fate of orthosilicic acid in the human body
  • 5.2.3. The link between PSi porosity and biocompatibility/biodegradability
  • 5.3. Cytotoxicity
  • 5.3.1. Cytotoxicity of PSi
  • 5.3.2. The link between PSi particle size and cytocompatibility
  • 5.3.2.1. THCPSi particles
  • 5.3.2.2. TOPSi particles
  • 5.4. The fate of porous silicon in the body
  • 5.4.1. Retention and excretion of PSi particles
  • 5.4.1.1. Plasma-mimetic fluid
  • 5.4.1.2. Gastrointestinal tract
  • 5.4.1.3. Tumor-associated cells
  • 5.4.2. Metabolism and degradation of PSi particles in different organs
  • 5.4.2.1. Eye
  • 5.4.2.2. Liver and spleen
  • 5.4.2.3. Other organs in systemic circulation
  • 5.5. In vivo behavior of PSi implants
  • 5.5.1. BrachySil (now OncoSil)
  • 5.5.2. PSi/polymer composites
  • 5.5.3. PSi membranes
  • 5.6. Porous silicon for biomimetic reactors and biohybrid systems
  • 5.6.1. Biomimetic reactors
  • 5.6.2. Biohybrid systems.
  • 5.6.2.1. TCPSi and THCPSi particles
  • 5.6.2.2. TOPSi particles
  • 5.7. Porous silicon for the design of targeted nanocarriers
  • 5.8. Porous silicon for radiation theranostics
  • 5.9. Porous silicon for tissue engineering
  • 5.10. Missing links
  • 5.10.1. Standardization
  • 5.10.2. In vitro studies
  • 5.10.3. In vivo studies
  • 5.11. Conclusion
  • References
  • Part 2: Porous silicon for bioimaging and biosensing applications
  • Chapter 6: Optical properties of porous silicon materials
  • 6.1. Introduction
  • 6.2. Morphology of PSi
  • 6.3. Effective medium models
  • 6.3.1. Maxwell-Garnett (MG) model
  • 6.3.2. Bruggeman model
  • 6.3.3. Looyenga-Landau-Lifshitz (LLL) model
  • 6.3.4. Bergman's representation
  • 6.4. Optical constants of nano-PSi
  • 6.5. Stability of the optical properties of nano-PSi
  • 6.6. Multilayer structures
  • 6.7. Optical applications of PSi optical filters
  • 6.7.1. Filtered light-emitting devices
  • 6.7.2. Filtered photodetectors
  • 6.7.3. Chemical sensors
  • 6.7.4. Biosensors
  • 6.8. Conclusion and future trends
  • References
  • Chapter 7: Radiolabeled porous silicon for nuclear imaging and theranostic applications
  • 7.1. Introduction
  • 7.2. Methods for tracing drug delivery
  • 7.2.1. Diagnostic methods
  • 7.2.2. Theranostics
  • 7.2.3. Imaging in drug development
  • 7.3. Radiolabeled PSi materials
  • 7.3.1. Methods of preparation
  • 7.3.2. Evaluation of biodistribution
  • 7.3.3. Evaluation of targeted accumulation
  • 7.3.3.1. Heart targeted PSi nanoparticles
  • 7.3.3.2. Tumor-targeted PSi nanoparticles
  • 7.3.4. Carrier for therapeutic radionuclides
  • 7.4. Conclusions and future trends
  • References
  • Chapter 8: Porous silicon for targeting microorganisms: Detection and treatment
  • 8.1. Introduction
  • 8.2. Advancements in microorganism detection
  • 8.2.1. Biosensing of bacteria within ``real samples��.
  • 8.2.2. Sensitivity and signal enhancement
  • 8.2.3. Monitoring bacterial behavior
  • 8.3. PSi as an antibacterial agent
  • 8.4. Conclusions and future trends
  • References
  • Chapter 9: Porous silicon biosensors for DNA sensing
  • 9.1. Introduction
  • 9.1.1. DNA sensing background
  • 9.1.2. Important metrics for DNA sensing
  • 9.1.2.1. Sensitivity and detection limit
  • 9.1.2.2. Selectivity
  • 9.1.2.3. Sensor response time
  • 9.1.2.4. Limitations on sequence length
  • 9.1.3. Other existing techniques for DNA detection and sequencing
  • 9.2. PSi sensor preparation
  • 9.2.1. Functionalization techniques
  • 9.2.2. DNA attachment approaches: Direct infiltration of pre-synthesized DNA or in situ DNA synthesis
  • 9.3. PSi DNA sensor structures, measurement techniques, and sensitivity
  • 9.3.1. Optical transduction
  • 9.3.1.1. Reflection spectroscopy
  • Single layer interferometers
  • Waveguides and other guided wave structures
  • Bragg mirrors and microcavities
  • Multilayer particles
  • 9.3.1.2. Absorption spectroscopy
  • 9.3.1.3. Photoluminescence (PL) and fluorescence
  • Single-layer
  • Microcavity
  • 9.3.1.4. Surface enhanced Raman spectroscopy (SERS)
  • 9.3.2. Electrical and electrochemical transduction
  • 9.4. Corrosion of PSi DNA sensors
  • 9.5. Effect of pore size on DNA infiltration and detection
  • 9.6. Control of DNA surface density in nanoscale pores
  • 9.7. Kinetics for real-time sensing
  • 9.8. Conclusions and future trends
  • References
  • Chapter 10: Near-infrared imaging for in vivo assessment of porous silicon-based materials
  • 10.1. Introduction
  • 10.2. Fabrication of PSi-based composited materials with NIR PL
  • 10.3. Assessment of the fate of PSi-based composited materials using in vivo imaging
  • 10.4. Monitoring the physiological microenvironments of pathological tissues in vivo
  • 10.5. Conclusions and future perspectives.