Cargando…

Analytical sample preparation with nano- and other high-performance materials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Lucena, Rafael (Editor ), C�ardenas Aranzana, M. Soledad (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 3.4.1 The importance of the stirring on the extraction performance
  • 3.4.2 Stir bar sorptive extraction
  • 3.4.3 Other microextraction techniques that integrate the extraction and stirring elements
  • 3.4.3.1 Stir membrane extraction
  • 3.4.3.2 Rotating disk extraction
  • 3.4.3.3 Stirring techniques based on monolith disks
  • 3.5 Conclusions
  • Acknowledgments
  • References
  • 4 Unconfined liquid-phase microextraction
  • 4.1 Introduction
  • 4.2 Single-drop microextraction
  • 4.2.1 Origins and fundamentals of the technique
  • 4.2.2 Improving the efficiency of single-drop microextraction
  • 4.2.3 Making single-drop microextraction compatible with low sample sizes
  • 4.2.4 Automation of single-drop microextraction
  • 4.3 Dispersive-based liquid-phase microextraction
  • 4.3.1 Chemically dispersion of the solvent
  • 4.3.2 Use of external energies for dispersing the solvent
  • 4.4 Conclusion
  • Acknowledgments
  • References
  • 5 Analytical microextraction with supported liquid membranes
  • 5.1 Introduction
  • 5.2 Two-phase hollow-fiber liquid-phase microextraction
  • 5.3 Three-phase hollow-fiber liquid-phase microextraction
  • 5.4 96-Well liquid-phase microextraction
  • 5.5 Solvent bar microextraction
  • 5.6 Electromembrane extraction
  • 5.7 Outlook
  • References
  • 6 Solid-liquid extraction techniques
  • 6.1 Introduction
  • 6.2 General aspects on SLE
  • 6.3 Classical SLE processes
  • 6.4 Superheated solvent extraction
  • 6.4.1 Static and dynamic SHSE
  • 6.4.2 Main variables involved in SHSE
  • 6.5 Ultrasound-assisted extraction
  • 6.5.1 Ultrasonic devices and USAE modes
  • 6.5.2 Variables involved in USAE
  • 6.6 Microwaves-assisted extraction
  • 6.6.1 MW devices and extraction systems
  • 6.6.2 Variables affecting MAE processes
  • 6.7 Comparison and applicability of SHSE, USAE, and MAE
  • 6.8 Conclusions
  • References.
  • 7 Microextraction-based samplers for liquid and tissue analysis
  • 7.1 Introduction
  • 7.2 Microextraction devices for convenient integration of sampling and extraction for liquid and tissues
  • 7.3 Applications
  • 7.3.1 Tissue analysis (plant and animal tissue)
  • 7.3.2 Samplers for water quality assessment
  • 7.3.3 Microextraction-based samplers for analysis of biofluids and food samples
  • 7.4 Conclusion
  • List of Abbreviations
  • References
  • 8 Direct coupling of microextraction with instrumental techniques
  • 8.1 Introduction
  • 8.2 Coupling of microextraction with spectroscopic techniques
  • 8.2.1 UV-vis spectroscopy
  • 8.2.2 Fluorescence spectroscopy
  • 8.2.3 Infrared spectroscopy
  • 8.2.4 Raman and surface-enhanced Raman spectroscopy
  • 8.3 Coupling of microextraction with mass spectrometry
  • 8.3.1 Peak versus continuous ion injection: similarities and differences
  • 8.3.2 Peak-based ion injection technologies
  • 8.3.3 Continuous ion injection technologies
  • 8.3.4 SPME-MS real-life implementation: it's a long way to the top (if you wanna rock 'N' roll)
  • 8.4 Overview of interfaces based on flow analysis, microfluidics, and 3D printing
  • 8.5 Conclusion
  • Acknowledgments
  • References
  • 9 Membrane sorptive phases
  • 9.1 Introduction
  • 9.2 Polymeric membranes
  • 9.2.1 Commercially available membranes
  • 9.2.2 Reinforced polypropylene hollow fibers
  • 9.2.3 Polystyrene membranes
  • 9.2.4 Polymer inclusion membranes
  • 9.2.5 Agarose gel membranes
  • 9.2.6 Other materials
  • 9.3 Fabric phases
  • 9.4 Paper-based sorptive phases
  • 9.4.1 Physical deposition of the coating
  • 9.4.2 Covalent bonding of the coating
  • 9.5 Conclusions
  • Acknowledgments
  • References
  • 10 Selectivity-enhanced sorbents
  • 10.1 Introduction
  • 10.2 Molecularly imprinted polymers
  • 10.3 Restricted access materials
  • 10.4 Selective biosorbents.
  • 10.4.1 Immunosorbents
  • 10.4.2 Oligosorbents
  • 10.4.3 Antibodies or aptamers?
  • 10.5 Conclusions
  • Acknowledgments
  • References
  • 11 Carbon nanoparticles
  • 11.1 Introduction
  • 11.2 Carbon-based nanomaterials in sample preparation
  • 11.2.1 Carbon nanotubes
  • 11.2.2 Graphene
  • 11.2.3 Fullerenes
  • 11.2.4 Carbon nanohorns
  • 11.2.5 Nanodiamonds, carbon-based QDs, and nanofibers
  • 11.3 Conclusions
  • Acknowledgments
  • References
  • 12 Metal and metal oxide nanomaterials in sample preparation
  • 12.1 Introduction
  • 12.2 MNs in sample preparation
  • 12.3 MONs in sample preparation
  • 12.3.1 ZrO2, TiO2, and HfO2
  • 12.3.2 SnO2 and CeO2
  • 12.3.3 Al2O3
  • 12.3.4 Iron oxide
  • 12.3.5 MgO, NiO, and ZnO
  • 12.3.6 Other metal oxides
  • 12.4 Application of MONs in sample preparation
  • 12.4.1 Bare MONs
  • 12.4.2 Modified MONs with inorganic substances
  • 12.4.3 Modified MONs with organic substances
  • 12.4.4 Modified MONs with MOFs
  • 12.5 Conclusions
  • References
  • 13 Reticular materials in sorbent-based extraction methods
  • 13.1 Introduction
  • 13.1.1 Metal-organic frameworks
  • 13.1.2 Covalent-organic frameworks
  • 13.1.3 Composites containing reticular materials
  • 13.2 Incorporation of reticular materials in analytical sample preparation methods
  • 13.2.1 Solid-phase extraction
  • 13.2.2 Miniaturized dispersive solid-phase extraction and its magnetic-assisted mode
  • 13.2.2.1 Miniaturized dispersive solid-phase extraction
  • 13.2.2.2 Miniaturized magnetic dispersive solid-phase extraction
  • 13.2.3 Solid-phase microextraction in different configurations
  • 13.3 Concluding remarks
  • Acknowledgments
  • List of abbreviations
  • References
  • 14 Polymeric nanocomposites
  • 14.1 Introduction
  • 14.2 Magnetic polymeric nanocomposites
  • 14.3 Carbon-based nanocomposites
  • 14.4 Metal-based polymeric nanocomposites
  • 14.5 Conclusions.
  • Acknowledgments
  • List of abbreviations
  • References
  • 15 Monolithic solids: synthesis and uses in microextraction techniques
  • 15.1 Introduction
  • 15.2 Preparation of monolithic beds
  • 15.2.1 Silica monoliths
  • 15.2.2 Organic monoliths
  • 15.2.3 Hybrid organic-silica monoliths
  • 15.3 Applications of monolithic materials in microextraction techniques
  • 15.3.1 Nonstirred microextraction formats
  • 15.3.2 Stirred monolithic extraction units
  • 15.3.2.1 Stir bars
  • 15.3.2.2 Stir cakes
  • 15.3.2.3 Stir disks
  • 15.4 Conclusions and future perspectives
  • Acknowledgments
  • List of abbreviations
  • References
  • 16 Ionic liquids
  • 16.1 Conventional ionic liquids
  • 16.2 Magnetic ionic liquids
  • 16.3 Polymeric ionic liquids
  • 16.3.1 Polymeric ionic liquids as sorptive coatings in solid-phase microextraction
  • 16.3.2 Polymeric ionic liquids as sorbents in other extraction techniques
  • 16.4 Conclusion
  • Acknowledgments
  • References
  • 17 Switchable solvents
  • 17.1 Introduction
  • 17.1.1 Switchable hydrophilicity solvents
  • 17.1.2 Switching process
  • 17.2 Applications of switchable solvents in sample preparation
  • 17.2.1 Switchable solvents for environmental samples analysis
  • 17.2.1.1 Heavy metals
  • 17.2.1.2 Organic pollutants
  • 17.2.2 Switchable solvents for bioanalysis
  • 17.2.3 Switchable solvents for food and agricultural samples analysis
  • 17.2.3.1 Heavy metals
  • 17.2.3.2 Organic pollutants
  • 17.3 Concluding remarks
  • Acknowledgments
  • References
  • 18 Deep eutectic solvents in microextraction
  • 18.1 Introduction
  • 18.2 Synthesis and physicochemical properties of DES
  • 18.3 Classification and types of DES
  • 18.4 Use of DES in microextraction
  • 18.4.1 DES for the extraction of inorganic analytes
  • 18.4.2 DES for the extraction of organic analytes
  • 18.5 Factors affecting extraction efficiency with DES.