Cargando…

New and future developments in microbial biotechnology and bioengineering : sustainable agriculture : microorganisms as biostimulants /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Singh, H. B., Dr (Editor ), Vaishnav, Anukool (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • About the Editors
  • Preface
  • CHAPTER 1
  • Role of microorganism as new generation plant bio-stimulants: An assessment
  • 1.1 Background
  • 1.2 Introduction of plant bio-stimulants
  • 1.3 Basic mechanism of bio-stimulants
  • 1.4 Sources of plant bio-stimulants
  • 1.5 Microbes as plant bio-stimulant
  • 1.5.1 Fungi as bio-stimulants
  • 1.5.2 Bacteria as bio-stimulants
  • 1.5.3 Microbial consortia as bio-stimulants
  • 1.6 Role of microbes in nutrient uptake/stimulation
  • 1.6.1 Nitrogen fixation
  • 1.6.2 Phosphate solubilisation
  • 1.6.3 Hormones and other secondary metabolite
  • 1.7 Conclusions
  • References
  • CHAPTER 2
  • Exploiting biostimulant properties of Trichoderma for sustainable plant production
  • 2.1 Introduction
  • 2.2 Trichoderma metabolism: from decomposers to plant growth promoters
  • 2.3 Trichoderma -plant chemical dialogue
  • 2.3.1 Trichoderma released compounds in plant growth promotion
  • 2.4 Trichoderma -induced resistance to plant pathogens
  • 2.4.1 Salicylic acid-mediated interactions
  • 2.4.2 Jasmonic acid and other oxylipins
  • 2.4.3 Biocontrol of aphids, nematodes and other pests
  • 2.5 Trichoderma and plant nutrition
  • 2.5.1 Major nutritional needs of crops
  • 2.5.2 Phosphate nutrition
  • 2.5.3 Nitrate use efficiency
  • 2.5.4 Iron acquisition
  • 2.5.5 Better usage of organic nutriments
  • 2.6 Soil acidification in Trichoderma -plant interactions
  • 2.7 Salt stress tolerance mediated by Trichoderma
  • 2.7.1 Plant adaptive responses to salinity
  • 2.7.2 Trichoderma improves plant adaptation to salt stress
  • 2.8 Conclusions and future prospects
  • References
  • CHAPTER 3
  • Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture
  • 3.1 Introduction.
  • 5.2.6 Mineral and organic constituents of algae
  • 5.2.7 Formulation of algal biostimulants
  • 5.2.8 Applications of algal biostimulants
  • 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies
  • 5.3 Conclusion and future prospects
  • References
  • CHAPTER 6
  • Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture
  • 6.1 Introduction
  • 6.2 Species diversity of Fluorescent Pseudomanads
  • 6.3 Mechanisms of Fluorescent Pseudomanads
  • 6.3.1 Plant growth promotion
  • 6.3.2 Siderophores
  • 6.3.3 Hydrogen cyanide production
  • 6.3.4 Antibiotic production
  • 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG)
  • 6.3.4.2 Phenazines
  • 6.3.4.3 Pyrrolnitrin and pyoluteorin
  • 6.3.5 Lytic enzyme production
  • 6.3.6 Induced systemic resistance
  • 6.4 Future prospects
  • References
  • CHAPTER 7
  • Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants
  • 7.1 Introduction
  • 7.2 Soil microbial communities: benign hidden players in plant growth
  • 7.3 P. indica : an overview
  • 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome
  • 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis
  • 7.4 Basic mechanisms in plants to counter drought stress
  • 7.5 Morphological and physiological innate responses in plants against drought stress
  • 7.5.1 Plants morphological responses in drought stress condition
  • 7.5.2 Plants physiological response in drought
  • 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress
  • 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study
  • 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress.
  • 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats
  • 7.9 Conclusion
  • References
  • CHAPTER 8
  • Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved
  • 8.1 Introduction
  • 8.2 Soil microbes and plant interactions
  • 8.2.1 Plant and microorganisms
  • 8.2.2 Soil and microorganism
  • 8.2.3 Soil and plant
  • 8.2.4 The three way interaction
  • 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients
  • 8.3.1 Weathering
  • 8.3.2 Carbonates and phosphates precipitation
  • 8.3.3 Nutrient cycling
  • 8.4 VAM fungi for efficient nutrient acquisition and mobilization
  • 8.4.1 Uniqueness of VAM
  • 8.4.2 Interaction of biotic and abiotic factors with VAM
  • 8.4.2.1 Abiotic factors
  • 8.4.2.2 Biotic factors
  • 8.4.3 Mass production of VAM
  • 8.4.4 Tips for the efficient use of VAM
  • 8.5 Genetics involved in nutrient cycling
  • 8.5.1 Nitrogen cycle
  • 8.5.2 Carbon cycle
  • 8.5.3 Phosphorus transformation
  • 8.5.4 Potassium solubilization
  • 8.5.5 Sulphur transformation
  • 8.6 Conclusions
  • References
  • CHAPTER 9
  • Role of soil microbes in micronutrient solubilization
  • 9.1 Introduction
  • 9.2 Importance of micronutrients in plant nutrition
  • 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake
  • 9.4 Factors affecting the availability of micronutrients
  • 9.4.1 Cationic micronutrients
  • 9.4.2 Anionic micronutrients
  • 9.5 Influence of rhizosphere in micronutrient availability
  • 9.6 Soil pH and pE as an indicator of micronutrient availability
  • 9.7 Micronutrients
  • 9.7.1 ZINC (Zn)
  • 9.7.2 Manganese
  • 9.7.3 Iron (Fe)
  • 9.7.4 Copper (Cu)
  • 9.7.5 Boron (B)
  • 9.7.6 Molybdenum (Mo)
  • 9.7.7 Chlorine (Cl)
  • 9.8 Conclusion and future perspectives.