|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1285495603 |
003 |
OCoLC |
005 |
20231120010616.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211117s2022 ne o 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|d OCLCO
|
020 |
|
|
|z 9780323851633
|
020 |
|
|
|z 0323851630
|
035 |
|
|
|a (OCoLC)1285495603
|
050 |
|
4 |
|a TP248.27.M53
|
082 |
0 |
4 |
|a 660.62
|2 23
|
245 |
0 |
0 |
|a New and future developments in microbial biotechnology and bioengineering :
|b sustainable agriculture : microorganisms as biostimulants /
|c edited by Harikesh Bahadur Singh, Anukool Vaishnav.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c [2022]
|
300 |
|
|
|a 1 online resource (1 volume)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- CHAPTER 1 -- Role of microorganism as new generation plant bio-stimulants: An assessment -- 1.1 Background -- 1.2 Introduction of plant bio-stimulants -- 1.3 Basic mechanism of bio-stimulants -- 1.4 Sources of plant bio-stimulants -- 1.5 Microbes as plant bio-stimulant -- 1.5.1 Fungi as bio-stimulants -- 1.5.2 Bacteria as bio-stimulants -- 1.5.3 Microbial consortia as bio-stimulants -- 1.6 Role of microbes in nutrient uptake/stimulation -- 1.6.1 Nitrogen fixation -- 1.6.2 Phosphate solubilisation -- 1.6.3 Hormones and other secondary metabolite -- 1.7 Conclusions -- References -- CHAPTER 2 -- Exploiting biostimulant properties of Trichoderma for sustainable plant production -- 2.1 Introduction -- 2.2 Trichoderma metabolism: from decomposers to plant growth promoters -- 2.3 Trichoderma -plant chemical dialogue -- 2.3.1 Trichoderma released compounds in plant growth promotion -- 2.4 Trichoderma -induced resistance to plant pathogens -- 2.4.1 Salicylic acid-mediated interactions -- 2.4.2 Jasmonic acid and other oxylipins -- 2.4.3 Biocontrol of aphids, nematodes and other pests -- 2.5 Trichoderma and plant nutrition -- 2.5.1 Major nutritional needs of crops -- 2.5.2 Phosphate nutrition -- 2.5.3 Nitrate use efficiency -- 2.5.4 Iron acquisition -- 2.5.5 Better usage of organic nutriments -- 2.6 Soil acidification in Trichoderma -plant interactions -- 2.7 Salt stress tolerance mediated by Trichoderma -- 2.7.1 Plant adaptive responses to salinity -- 2.7.2 Trichoderma improves plant adaptation to salt stress -- 2.8 Conclusions and future prospects -- References -- CHAPTER 3 -- Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture -- 3.1 Introduction.
|
505 |
8 |
|
|a 5.2.6 Mineral and organic constituents of algae -- 5.2.7 Formulation of algal biostimulants -- 5.2.8 Applications of algal biostimulants -- 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies -- 5.3 Conclusion and future prospects -- References -- CHAPTER 6 -- Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture -- 6.1 Introduction -- 6.2 Species diversity of Fluorescent Pseudomanads -- 6.3 Mechanisms of Fluorescent Pseudomanads -- 6.3.1 Plant growth promotion -- 6.3.2 Siderophores -- 6.3.3 Hydrogen cyanide production -- 6.3.4 Antibiotic production -- 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG) -- 6.3.4.2 Phenazines -- 6.3.4.3 Pyrrolnitrin and pyoluteorin -- 6.3.5 Lytic enzyme production -- 6.3.6 Induced systemic resistance -- 6.4 Future prospects -- References -- CHAPTER 7 -- Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants -- 7.1 Introduction -- 7.2 Soil microbial communities: benign hidden players in plant growth -- 7.3 P. indica : an overview -- 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome -- 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis -- 7.4 Basic mechanisms in plants to counter drought stress -- 7.5 Morphological and physiological innate responses in plants against drought stress -- 7.5.1 Plants morphological responses in drought stress condition -- 7.5.2 Plants physiological response in drought -- 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress -- 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study -- 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress.
|
505 |
8 |
|
|a 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats -- 7.9 Conclusion -- References -- CHAPTER 8 -- Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved -- 8.1 Introduction -- 8.2 Soil microbes and plant interactions -- 8.2.1 Plant and microorganisms -- 8.2.2 Soil and microorganism -- 8.2.3 Soil and plant -- 8.2.4 The three way interaction -- 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients -- 8.3.1 Weathering -- 8.3.2 Carbonates and phosphates precipitation -- 8.3.3 Nutrient cycling -- 8.4 VAM fungi for efficient nutrient acquisition and mobilization -- 8.4.1 Uniqueness of VAM -- 8.4.2 Interaction of biotic and abiotic factors with VAM -- 8.4.2.1 Abiotic factors -- 8.4.2.2 Biotic factors -- 8.4.3 Mass production of VAM -- 8.4.4 Tips for the efficient use of VAM -- 8.5 Genetics involved in nutrient cycling -- 8.5.1 Nitrogen cycle -- 8.5.2 Carbon cycle -- 8.5.3 Phosphorus transformation -- 8.5.4 Potassium solubilization -- 8.5.5 Sulphur transformation -- 8.6 Conclusions -- References -- CHAPTER 9 -- Role of soil microbes in micronutrient solubilization -- 9.1 Introduction -- 9.2 Importance of micronutrients in plant nutrition -- 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake -- 9.4 Factors affecting the availability of micronutrients -- 9.4.1 Cationic micronutrients -- 9.4.2 Anionic micronutrients -- 9.5 Influence of rhizosphere in micronutrient availability -- 9.6 Soil pH and pE as an indicator of micronutrient availability -- 9.7 Micronutrients -- 9.7.1 ZINC (Zn) -- 9.7.2 Manganese -- 9.7.3 Iron (Fe) -- 9.7.4 Copper (Cu) -- 9.7.5 Boron (B) -- 9.7.6 Molybdenum (Mo) -- 9.7.7 Chlorine (Cl) -- 9.8 Conclusion and future perspectives.
|
650 |
|
0 |
|a Microbial biotechnology.
|
650 |
|
0 |
|a Microorganisms.
|
650 |
|
6 |
|a Biotechnologie microbienne.
|0 (CaQQLa)201-0164750
|
650 |
|
6 |
|a Micro-organismes.
|0 (CaQQLa)201-0014998
|
650 |
|
7 |
|a microorganisms.
|2 aat
|0 (CStmoGRI)aat300252166
|
650 |
|
7 |
|a Microbial biotechnology
|2 fast
|0 (OCoLC)fst01019471
|
650 |
|
7 |
|a Microorganisms
|2 fast
|0 (OCoLC)fst01019928
|
700 |
1 |
|
|a Singh, H. B.,
|c Dr.,
|e editor.
|
700 |
1 |
|
|a Vaishnav, Anukool,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t New and future developments in microbial biotechnology and bioengineering.
|d Amsterdam : Elsevier, 2021
|z 9780323851633
|w (OCoLC)1272898627
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323851633
|z Texto completo
|