Cargando…

New and future developments in microbial biotechnology and bioengineering : sustainable agriculture : microorganisms as biostimulants /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Singh, H. B., Dr (Editor ), Vaishnav, Anukool (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1285495603
003 OCoLC
005 20231120010616.0
006 m o d
007 cr cnu---unuuu
008 211117s2022 ne o 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d SFB  |d OCLCQ  |d OCLCO 
020 |z 9780323851633 
020 |z 0323851630 
035 |a (OCoLC)1285495603 
050 4 |a TP248.27.M53 
082 0 4 |a 660.62  |2 23 
245 0 0 |a New and future developments in microbial biotechnology and bioengineering :  |b sustainable agriculture : microorganisms as biostimulants /  |c edited by Harikesh Bahadur Singh, Anukool Vaishnav. 
264 1 |a Amsterdam, Netherlands :  |b Elsevier,  |c [2022] 
300 |a 1 online resource (1 volume) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- CHAPTER 1 -- Role of microorganism as new generation plant bio-stimulants: An assessment -- 1.1 Background -- 1.2 Introduction of plant bio-stimulants -- 1.3 Basic mechanism of bio-stimulants -- 1.4 Sources of plant bio-stimulants -- 1.5 Microbes as plant bio-stimulant -- 1.5.1 Fungi as bio-stimulants -- 1.5.2 Bacteria as bio-stimulants -- 1.5.3 Microbial consortia as bio-stimulants -- 1.6 Role of microbes in nutrient uptake/stimulation -- 1.6.1 Nitrogen fixation -- 1.6.2 Phosphate solubilisation -- 1.6.3 Hormones and other secondary metabolite -- 1.7 Conclusions -- References -- CHAPTER 2 -- Exploiting biostimulant properties of Trichoderma for sustainable plant production -- 2.1 Introduction -- 2.2 Trichoderma metabolism: from decomposers to plant growth promoters -- 2.3 Trichoderma -plant chemical dialogue -- 2.3.1 Trichoderma released compounds in plant growth promotion -- 2.4 Trichoderma -induced resistance to plant pathogens -- 2.4.1 Salicylic acid-mediated interactions -- 2.4.2 Jasmonic acid and other oxylipins -- 2.4.3 Biocontrol of aphids, nematodes and other pests -- 2.5 Trichoderma and plant nutrition -- 2.5.1 Major nutritional needs of crops -- 2.5.2 Phosphate nutrition -- 2.5.3 Nitrate use efficiency -- 2.5.4 Iron acquisition -- 2.5.5 Better usage of organic nutriments -- 2.6 Soil acidification in Trichoderma -plant interactions -- 2.7 Salt stress tolerance mediated by Trichoderma -- 2.7.1 Plant adaptive responses to salinity -- 2.7.2 Trichoderma improves plant adaptation to salt stress -- 2.8 Conclusions and future prospects -- References -- CHAPTER 3 -- Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture -- 3.1 Introduction. 
505 8 |a 5.2.6 Mineral and organic constituents of algae -- 5.2.7 Formulation of algal biostimulants -- 5.2.8 Applications of algal biostimulants -- 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies -- 5.3 Conclusion and future prospects -- References -- CHAPTER 6 -- Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture -- 6.1 Introduction -- 6.2 Species diversity of Fluorescent Pseudomanads -- 6.3 Mechanisms of Fluorescent Pseudomanads -- 6.3.1 Plant growth promotion -- 6.3.2 Siderophores -- 6.3.3 Hydrogen cyanide production -- 6.3.4 Antibiotic production -- 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG) -- 6.3.4.2 Phenazines -- 6.3.4.3 Pyrrolnitrin and pyoluteorin -- 6.3.5 Lytic enzyme production -- 6.3.6 Induced systemic resistance -- 6.4 Future prospects -- References -- CHAPTER 7 -- Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants -- 7.1 Introduction -- 7.2 Soil microbial communities: benign hidden players in plant growth -- 7.3 P. indica : an overview -- 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome -- 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis -- 7.4 Basic mechanisms in plants to counter drought stress -- 7.5 Morphological and physiological innate responses in plants against drought stress -- 7.5.1 Plants morphological responses in drought stress condition -- 7.5.2 Plants physiological response in drought -- 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress -- 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study -- 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress. 
505 8 |a 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats -- 7.9 Conclusion -- References -- CHAPTER 8 -- Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved -- 8.1 Introduction -- 8.2 Soil microbes and plant interactions -- 8.2.1 Plant and microorganisms -- 8.2.2 Soil and microorganism -- 8.2.3 Soil and plant -- 8.2.4 The three way interaction -- 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients -- 8.3.1 Weathering -- 8.3.2 Carbonates and phosphates precipitation -- 8.3.3 Nutrient cycling -- 8.4 VAM fungi for efficient nutrient acquisition and mobilization -- 8.4.1 Uniqueness of VAM -- 8.4.2 Interaction of biotic and abiotic factors with VAM -- 8.4.2.1 Abiotic factors -- 8.4.2.2 Biotic factors -- 8.4.3 Mass production of VAM -- 8.4.4 Tips for the efficient use of VAM -- 8.5 Genetics involved in nutrient cycling -- 8.5.1 Nitrogen cycle -- 8.5.2 Carbon cycle -- 8.5.3 Phosphorus transformation -- 8.5.4 Potassium solubilization -- 8.5.5 Sulphur transformation -- 8.6 Conclusions -- References -- CHAPTER 9 -- Role of soil microbes in micronutrient solubilization -- 9.1 Introduction -- 9.2 Importance of micronutrients in plant nutrition -- 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake -- 9.4 Factors affecting the availability of micronutrients -- 9.4.1 Cationic micronutrients -- 9.4.2 Anionic micronutrients -- 9.5 Influence of rhizosphere in micronutrient availability -- 9.6 Soil pH and pE as an indicator of micronutrient availability -- 9.7 Micronutrients -- 9.7.1 ZINC (Zn) -- 9.7.2 Manganese -- 9.7.3 Iron (Fe) -- 9.7.4 Copper (Cu) -- 9.7.5 Boron (B) -- 9.7.6 Molybdenum (Mo) -- 9.7.7 Chlorine (Cl) -- 9.8 Conclusion and future perspectives. 
650 0 |a Microbial biotechnology. 
650 0 |a Microorganisms. 
650 6 |a Biotechnologie microbienne.  |0 (CaQQLa)201-0164750 
650 6 |a Micro-organismes.  |0 (CaQQLa)201-0014998 
650 7 |a microorganisms.  |2 aat  |0 (CStmoGRI)aat300252166 
650 7 |a Microbial biotechnology  |2 fast  |0 (OCoLC)fst01019471 
650 7 |a Microorganisms  |2 fast  |0 (OCoLC)fst01019928 
700 1 |a Singh, H. B.,  |c Dr.,  |e editor. 
700 1 |a Vaishnav, Anukool,  |e editor. 
776 0 8 |i Print version:  |t New and future developments in microbial biotechnology and bioengineering.  |d Amsterdam : Elsevier, 2021  |z 9780323851633  |w (OCoLC)1272898627 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323851633  |z Texto completo