Precipitation science : measurement, remote sensing, microphysics and modeling /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Precipitation Science
- Copyright Page
- Dedication
- Contents
- List of contributors
- Foreword
- Preface
- Related titles by Silas Michaelides
- References
- Credits
- 1 Precipitation Measurement
- 1 Accuracy assessment and intercomparison of precipitation measurement instruments
- 1.1 Introduction
- 1.2 Precipitation measurement biases
- 1.2.1 Instrumental biases and calibration procedures for catching gauges
- 1.2.1.1 Field calibration device
- 1.2.2 Calibration of non-catching gauges
- 1.3 Wind-induced bias of catching gauges
- 1.3.1 Computational fluid dynamic simulations
- 1.3.2 Particle tracking model and collection efficiency curves
- 1.4 Intercomparison of precipitation measurement instruments
- 1.5 Concluding remarks
- References
- 2 Application of underwater passive acoustic measurements of ocean sound in precipitation estimation
- 2.1 Introduction
- 2.2 Passive aquatic listening technology, methods, and data collection
- 2.3 Acoustic data analysis
- 2.3.1 Data collection
- 2.3.2 Acoustic data and quality control processing
- 2.3.2.1 Electronic filter correction
- 2.3.2.2 Residual sensitivity correction
- 2.3.2.3 Time series of acoustic parameters
- 2.3.2.4 Classification analysis
- 2.3.2.5 Acoustic wind speed measurement
- 2.4 Acoustic precipitation analysis
- 2.5 Case studies
- 2.5.1 The Ionian Sea rainfall experiment
- 2.5.1.1 Classification and validation procedure
- 2.5.1.2 Assessment results: case study on March 12, 2004
- 2.5.1.3 Spatial averaging of the rainfall signal
- 2.5.2 The Aegean Sea experiment
- 2.5.2.1 Marine mammal detection
- 2.5.2.2 Shipping detection
- 2.5.2.3 Sound budgets and acoustic summaries
- 2.6 Concluding remarks
- References
- 3 Quality control and verification of precipitation observations, estimates, and forecasts
- 3.1 Introduction.
- 3.2 Quality control of observations from a rain gauge network
- 3.2.1 Rain gauge errors
- 3.2.2 Rain gauge data quality control
- 3.2.3 Examples of implementation of procedures for quality control of rain gauge data
- 3.2.4 Increasing rain gauge network density by applying other techniques
- 3.3 Quality control of weather radar data
- 3.3.1 Quality characterization of radar data
- 3.3.2 Quality control of 3D radar data
- 3.3.3 Quality control of 2D surface precipitation estimates
- 3.3.4 Quality-based composition of 2D surface precipitation products
- 3.4 Quality control of satellite observations
- 3.4.1 Observations of precipitation from meteorological satellites
- 3.4.2 Quality control of precipitation estimates based on satellite products
- 3.5 Quality control of multisource surface precipitation estimates
- 3.5.1 Multisource precipitation estimates
- 3.5.2 Quality-based multisource precipitation estimation
- 3.5.3 Example of merging
- 3.6 Methods of evaluating the skill of forecasts
- 3.6.1 Precipitation forecasts
- 3.6.1.1 Introduction
- 3.6.1.2 Errors in NWP modeling of precipitation
- 3.6.1.3 Observational data
- 3.6.1.4 Verifying models using observational data: synoptic stations, radars, and satellites
- 3.6.1.5 Verification measures and methods
- 3.6.2 Standard methods of forecast verification
- 3.6.3 Spatial methods of forecast verification
- 3.7 Conclusion
- References
- 4 Insights on a global Extreme Rainfall Detection System
- 4.1 Introduction
- 4.2 The Extreme Rainfall Detection System: input data
- 4.2.1 Near real-time
- 4.2.2 Forecast
- 4.3 Extreme rainfall detection methodology
- 4.4 Case studies
- 4.5 Conclusion
- Acknowledgments
- References
- 2 Precipitation Remote Sensing
- 5 Evaluation of high-resolution satellite precipitation data over the Mediterranean Region
- 5.1 Introduction.
- 5.2 Study area
- 5.3 Data and methodology
- 5.3.1 TRMM/GPM data
- 5.3.2 GSMaP data
- 5.3.3 E-OBS data
- 5.3.4 Methods
- 5.4 Results and discussion
- 5.4.1 Mean annual precipitation maps
- 5.4.2 Average difference maps
- 5.4.3 Correlation maps
- 5.5 Conclusion
- Acknowledgments
- References
- 6 Fundamental satellite precipitation data records
- 6.1 Introduction
- 6.2 Satellite precipitation estimates
- 6.3 Satellite observational records
- 6.4 Precipitation climate data records
- 6.5 Key questions
- 6.6 Conclusion
- Acknowledgments
- References
- 7 The potential of using satellite-related precipitation data sources in arid regions
- 7.1 Arid regions
- 7.2 Challenges of arid regions
- 7.2.1 Water scarcity
- 7.2.2 Data scarcity
- 7.3 The water cycle in arid regions
- 7.3.1 Precipitation
- 7.3.2 Infiltration
- 7.3.3 Runoff
- 7.3.4 Evapotranspiration
- 7.4 Storage
- 7.4.1 Aquifers
- 7.4.2 Soil moisture
- 7.4.3 Rivers and lakes
- 7.5 Water consumption
- 7.6 Satellite-based precipitation data sources
- 7.7 Performance of satellite-related precipitation estimations in an arid region
- 7.7.1 The study site
- 7.7.2 Rain-gauge network and in situ measurements
- 7.7.3 TMPA and IMERG precipitation data
- 7.7.4 Statistical metrics
- 7.7.4.1 Statistical tests with TMPA and IMERG
- 7.7.4.2 Compatibility of TMPA and IMERG data to rain-gauge measurements
- 7.7.4.3 TMPA and IMERG data in detecting rainfall
- 7.7.5 Discussion of results
- 7.8 Concluding remarks
- Acknowledgments
- References
- 8 Monitoring precipitation from space: progress, challenges, and opportunities
- 8.1 Introduction
- 8.2 Progress in satellite-based precipitation monitoring
- 8.3 Gaps, challenges, and opportunities
- 8.3.1 Challenges
- 8.3.2 Downscaling
- 8.3.3 Error correction
- 8.3.4 Satellite-based precipitation applications.
- 8.3.5 Water resource management
- 8.3.6 Drought prediction
- 8.3.7 River flow forecast
- 8.3.8 Landslide forecast
- 8.3.9 Numerical weather forecast
- 8.4 Conclusion
- References
- 9 Satellite hail detection
- 9.1 Introduction
- 9.2 Physical basis underpinning hail remote sensing
- 9.2.1 Radar remote sensing
- 9.2.2 Radiometer remote sensing
- 9.3 State-of-the-art satellite microwave methods for hail detection
- 9.3.1 Satellite radar-based detection of hail
- 9.3.2 Satellite radiometer-based detection of hail
- 9.4 Satellite observations: July 17, 2019 case study
- 9.5 Satellite climatology of hail: status, pitfalls, and ways forward
- 9.5.1 Champion storms
- 9.5.2 Hail climatologies
- 9.6 Conclusion and future perspectives
- Acknowledgments
- References
- 10 Development of a precipitation-retrieval scheme for cross-track passive microwave sounding instruments
- 10.1 Introduction
- 10.2 Precipitation retrievals
- 10.3 Development of the Precipitation Retrieval and Profiling Scheme
- 10.3.1 The PRPS-SAPHIR a priori scheme
- 10.3.2 Algorithm design
- 10.3.3 The PRPS DPR-SAPHIR database
- 10.3.4 PRPS retrieval
- 10.4 Evaluation and validation
- 10.5 Future directions
- References
- 11 Evaluation of high-resolution satellite precipitation over the global oceans
- 11.1 Introduction
- 11.2 Datasets
- 11.2.1 OceanRAIN dataset
- 11.2.2 IMERG dataset
- 11.2.3 Matched dataset
- 11.3 Evaluation procedure
- 11.4 Discussion of evaluation results
- 11.4.1 IMERG-OceanRAIN comparison
- 11.4.2 Evaluation of error sources
- 11.5 OceanRAIN applications
- 11.6 Conclusion
- References
- 12 Recent advances and challenges in satellite-based snowfall detection and estimation
- 12.1 Introduction
- 12.2 Spaceborne radars and snowfall
- 12.2.1 CloudSat Cloud Profiling Radar
- 12.2.2 The GPM-CO dual-frequency precipitation radar.
- 12.3 Passive microwave radiometry and snowfall
- 12.3.1 GMI and ATMS snowfall observation capabilities
- 12.3.1.1 GMI high-frequency channels and 166-GHz polarization signal
- 12.3.1.2 Impact of background surface conditions
- 12.3.1.3 Analysis of ATMS snowfall observation capabilities
- 12.4 PMW snowfall retrieval techniques
- 12.4.1 GPROF and SLALOM snowfall retrieval algorithms for GMI
- 12.5 Ground-based snowfall observations
- 12.6 Conclusion and recommendations
- Acknowledgments
- References
- 13 Errors and uncertainties associated with quasiglobal satellite precipitation products
- 13.1 Introduction
- 13.2 Sensor errors and uncertainties
- 13.3 Retrieval scheme errors and uncertainties
- 13.3.1 Information from observations
- 13.3.2 Incorporating ancillary data
- 13.4 Product errors and uncertainties
- 13.5 Conclusion
- References
- 14 Performance assessment of merged multisatellite precipitation datasets over diverse climate and complex topography
- 14.1 Introduction
- 14.2 Data and methodology
- 14.2.1 Study area
- 14.2.1.1 Glacial zone
- 14.2.1.2 Humid zone
- 14.2.1.3 Arid zone
- 14.2.1.4 Hyper-arid zone
- 14.2.2 Spatial distribution of precipitation across all climate zones of Pakistan
- 14.3 Performance assessment of satellite precipitation products across Pakistan
- 14.3.1 Introduction to available assessment results
- 14.3.2 Limitations, controversies, and intercomparison of zonal errors in evaluated satellite precipitation products
- 14.4 Merged precipitation datasets: advancements and imperfections
- 14.4.1 Glacial zone
- 14.4.2 Humid zone
- 14.4.3 Arid zone
- 14.4.4 Hyperarid zone
- 14.5 Conclusion
- Acknowledgments
- References
- 3 Precipitation Microphysics
- 15 Melting of atmospheric ice particles
- 15.1 Introduction.