Cargando…

Precipitation science : measurement, remote sensing, microphysics and modeling /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Michaelides, Silas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1285492515
003 OCoLC
005 20231120010616.0
006 m o d
007 cr |n|||||||||
008 211117s2022 ne o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d OCLCF  |d OCLCO  |d N$T  |d OCLCO  |d OCLCQ  |d K6U  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1285337176  |a 1285363191  |a 1285455432 
020 |a 9780128229378  |q (electronic bk.) 
020 |a 0128229373  |q (electronic bk.) 
020 |z 9780128229736 
035 |a (OCoLC)1285492515  |z (OCoLC)1285337176  |z (OCoLC)1285363191  |z (OCoLC)1285455432 
050 4 |a QC925 
082 0 4 |a 551.577  |2 23 
245 0 0 |a Precipitation science :  |b measurement, remote sensing, microphysics and modeling /  |c edited by Silas Michaelides. 
260 |a Amsterdam :  |b Elsevier,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Front Cover -- Precipitation Science -- Copyright Page -- Dedication -- Contents -- List of contributors -- Foreword -- Preface -- Related titles by Silas Michaelides -- References -- Credits -- 1 Precipitation Measurement -- 1 Accuracy assessment and intercomparison of precipitation measurement instruments -- 1.1 Introduction -- 1.2 Precipitation measurement biases -- 1.2.1 Instrumental biases and calibration procedures for catching gauges -- 1.2.1.1 Field calibration device -- 1.2.2 Calibration of non-catching gauges -- 1.3 Wind-induced bias of catching gauges -- 1.3.1 Computational fluid dynamic simulations -- 1.3.2 Particle tracking model and collection efficiency curves -- 1.4 Intercomparison of precipitation measurement instruments -- 1.5 Concluding remarks -- References -- 2 Application of underwater passive acoustic measurements of ocean sound in precipitation estimation -- 2.1 Introduction -- 2.2 Passive aquatic listening technology, methods, and data collection -- 2.3 Acoustic data analysis -- 2.3.1 Data collection -- 2.3.2 Acoustic data and quality control processing -- 2.3.2.1 Electronic filter correction -- 2.3.2.2 Residual sensitivity correction -- 2.3.2.3 Time series of acoustic parameters -- 2.3.2.4 Classification analysis -- 2.3.2.5 Acoustic wind speed measurement -- 2.4 Acoustic precipitation analysis -- 2.5 Case studies -- 2.5.1 The Ionian Sea rainfall experiment -- 2.5.1.1 Classification and validation procedure -- 2.5.1.2 Assessment results: case study on March 12, 2004 -- 2.5.1.3 Spatial averaging of the rainfall signal -- 2.5.2 The Aegean Sea experiment -- 2.5.2.1 Marine mammal detection -- 2.5.2.2 Shipping detection -- 2.5.2.3 Sound budgets and acoustic summaries -- 2.6 Concluding remarks -- References -- 3 Quality control and verification of precipitation observations, estimates, and forecasts -- 3.1 Introduction. 
505 8 |a 3.2 Quality control of observations from a rain gauge network -- 3.2.1 Rain gauge errors -- 3.2.2 Rain gauge data quality control -- 3.2.3 Examples of implementation of procedures for quality control of rain gauge data -- 3.2.4 Increasing rain gauge network density by applying other techniques -- 3.3 Quality control of weather radar data -- 3.3.1 Quality characterization of radar data -- 3.3.2 Quality control of 3D radar data -- 3.3.3 Quality control of 2D surface precipitation estimates -- 3.3.4 Quality-based composition of 2D surface precipitation products -- 3.4 Quality control of satellite observations -- 3.4.1 Observations of precipitation from meteorological satellites -- 3.4.2 Quality control of precipitation estimates based on satellite products -- 3.5 Quality control of multisource surface precipitation estimates -- 3.5.1 Multisource precipitation estimates -- 3.5.2 Quality-based multisource precipitation estimation -- 3.5.3 Example of merging -- 3.6 Methods of evaluating the skill of forecasts -- 3.6.1 Precipitation forecasts -- 3.6.1.1 Introduction -- 3.6.1.2 Errors in NWP modeling of precipitation -- 3.6.1.3 Observational data -- 3.6.1.4 Verifying models using observational data: synoptic stations, radars, and satellites -- 3.6.1.5 Verification measures and methods -- 3.6.2 Standard methods of forecast verification -- 3.6.3 Spatial methods of forecast verification -- 3.7 Conclusion -- References -- 4 Insights on a global Extreme Rainfall Detection System -- 4.1 Introduction -- 4.2 The Extreme Rainfall Detection System: input data -- 4.2.1 Near real-time -- 4.2.2 Forecast -- 4.3 Extreme rainfall detection methodology -- 4.4 Case studies -- 4.5 Conclusion -- Acknowledgments -- References -- 2 Precipitation Remote Sensing -- 5 Evaluation of high-resolution satellite precipitation data over the Mediterranean Region -- 5.1 Introduction. 
505 8 |a 5.2 Study area -- 5.3 Data and methodology -- 5.3.1 TRMM/GPM data -- 5.3.2 GSMaP data -- 5.3.3 E-OBS data -- 5.3.4 Methods -- 5.4 Results and discussion -- 5.4.1 Mean annual precipitation maps -- 5.4.2 Average difference maps -- 5.4.3 Correlation maps -- 5.5 Conclusion -- Acknowledgments -- References -- 6 Fundamental satellite precipitation data records -- 6.1 Introduction -- 6.2 Satellite precipitation estimates -- 6.3 Satellite observational records -- 6.4 Precipitation climate data records -- 6.5 Key questions -- 6.6 Conclusion -- Acknowledgments -- References -- 7 The potential of using satellite-related precipitation data sources in arid regions -- 7.1 Arid regions -- 7.2 Challenges of arid regions -- 7.2.1 Water scarcity -- 7.2.2 Data scarcity -- 7.3 The water cycle in arid regions -- 7.3.1 Precipitation -- 7.3.2 Infiltration -- 7.3.3 Runoff -- 7.3.4 Evapotranspiration -- 7.4 Storage -- 7.4.1 Aquifers -- 7.4.2 Soil moisture -- 7.4.3 Rivers and lakes -- 7.5 Water consumption -- 7.6 Satellite-based precipitation data sources -- 7.7 Performance of satellite-related precipitation estimations in an arid region -- 7.7.1 The study site -- 7.7.2 Rain-gauge network and in situ measurements -- 7.7.3 TMPA and IMERG precipitation data -- 7.7.4 Statistical metrics -- 7.7.4.1 Statistical tests with TMPA and IMERG -- 7.7.4.2 Compatibility of TMPA and IMERG data to rain-gauge measurements -- 7.7.4.3 TMPA and IMERG data in detecting rainfall -- 7.7.5 Discussion of results -- 7.8 Concluding remarks -- Acknowledgments -- References -- 8 Monitoring precipitation from space: progress, challenges, and opportunities -- 8.1 Introduction -- 8.2 Progress in satellite-based precipitation monitoring -- 8.3 Gaps, challenges, and opportunities -- 8.3.1 Challenges -- 8.3.2 Downscaling -- 8.3.3 Error correction -- 8.3.4 Satellite-based precipitation applications. 
505 8 |a 8.3.5 Water resource management -- 8.3.6 Drought prediction -- 8.3.7 River flow forecast -- 8.3.8 Landslide forecast -- 8.3.9 Numerical weather forecast -- 8.4 Conclusion -- References -- 9 Satellite hail detection -- 9.1 Introduction -- 9.2 Physical basis underpinning hail remote sensing -- 9.2.1 Radar remote sensing -- 9.2.2 Radiometer remote sensing -- 9.3 State-of-the-art satellite microwave methods for hail detection -- 9.3.1 Satellite radar-based detection of hail -- 9.3.2 Satellite radiometer-based detection of hail -- 9.4 Satellite observations: July 17, 2019 case study -- 9.5 Satellite climatology of hail: status, pitfalls, and ways forward -- 9.5.1 Champion storms -- 9.5.2 Hail climatologies -- 9.6 Conclusion and future perspectives -- Acknowledgments -- References -- 10 Development of a precipitation-retrieval scheme for cross-track passive microwave sounding instruments -- 10.1 Introduction -- 10.2 Precipitation retrievals -- 10.3 Development of the Precipitation Retrieval and Profiling Scheme -- 10.3.1 The PRPS-SAPHIR a priori scheme -- 10.3.2 Algorithm design -- 10.3.3 The PRPS DPR-SAPHIR database -- 10.3.4 PRPS retrieval -- 10.4 Evaluation and validation -- 10.5 Future directions -- References -- 11 Evaluation of high-resolution satellite precipitation over the global oceans -- 11.1 Introduction -- 11.2 Datasets -- 11.2.1 OceanRAIN dataset -- 11.2.2 IMERG dataset -- 11.2.3 Matched dataset -- 11.3 Evaluation procedure -- 11.4 Discussion of evaluation results -- 11.4.1 IMERG-OceanRAIN comparison -- 11.4.2 Evaluation of error sources -- 11.5 OceanRAIN applications -- 11.6 Conclusion -- References -- 12 Recent advances and challenges in satellite-based snowfall detection and estimation -- 12.1 Introduction -- 12.2 Spaceborne radars and snowfall -- 12.2.1 CloudSat Cloud Profiling Radar -- 12.2.2 The GPM-CO dual-frequency precipitation radar. 
505 8 |a 12.3 Passive microwave radiometry and snowfall -- 12.3.1 GMI and ATMS snowfall observation capabilities -- 12.3.1.1 GMI high-frequency channels and 166-GHz polarization signal -- 12.3.1.2 Impact of background surface conditions -- 12.3.1.3 Analysis of ATMS snowfall observation capabilities -- 12.4 PMW snowfall retrieval techniques -- 12.4.1 GPROF and SLALOM snowfall retrieval algorithms for GMI -- 12.5 Ground-based snowfall observations -- 12.6 Conclusion and recommendations -- Acknowledgments -- References -- 13 Errors and uncertainties associated with quasiglobal satellite precipitation products -- 13.1 Introduction -- 13.2 Sensor errors and uncertainties -- 13.3 Retrieval scheme errors and uncertainties -- 13.3.1 Information from observations -- 13.3.2 Incorporating ancillary data -- 13.4 Product errors and uncertainties -- 13.5 Conclusion -- References -- 14 Performance assessment of merged multisatellite precipitation datasets over diverse climate and complex topography -- 14.1 Introduction -- 14.2 Data and methodology -- 14.2.1 Study area -- 14.2.1.1 Glacial zone -- 14.2.1.2 Humid zone -- 14.2.1.3 Arid zone -- 14.2.1.4 Hyper-arid zone -- 14.2.2 Spatial distribution of precipitation across all climate zones of Pakistan -- 14.3 Performance assessment of satellite precipitation products across Pakistan -- 14.3.1 Introduction to available assessment results -- 14.3.2 Limitations, controversies, and intercomparison of zonal errors in evaluated satellite precipitation products -- 14.4 Merged precipitation datasets: advancements and imperfections -- 14.4.1 Glacial zone -- 14.4.2 Humid zone -- 14.4.3 Arid zone -- 14.4.4 Hyperarid zone -- 14.5 Conclusion -- Acknowledgments -- References -- 3 Precipitation Microphysics -- 15 Melting of atmospheric ice particles -- 15.1 Introduction. 
650 0 |a Precipitation (Meteorology) 
650 0 |a Precipitation forecasting. 
650 6 |a Pr�ecipitations (M�et�eorologie)  |0 (CaQQLa)201-0026905 
650 6 |a Pr�ecipitations (M�et�eorologie)  |x Pr�evision.  |0 (CaQQLa)201-0261330 
650 7 |a precipitation.  |2 aat  |0 (CStmoGRI)aat300055373 
650 7 |a Precipitation forecasting  |2 fast  |0 (OCoLC)fst01074948 
650 7 |a Precipitation (Meteorology)  |2 fast  |0 (OCoLC)fst01074923 
700 1 |a Michaelides, Silas. 
776 0 8 |i Print version:  |z 012822973X  |z 9780128229736  |w (OCoLC)1245659644 
776 0 8 |i Print version:  |t Precipitation science  |z 9780128229736  |w (OCoLC)1272885970 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128229736  |z Texto completo