Pincer-metal complexes : applications in catalytic dehydrogenation chemistry /
Pincer-Metal Complexes: Applications in Catalytic Dehydrogenation Chemistry provides an overview of pincer-metal catalytic systems that transform hydrocarbons and their derivatives from an synthetic and mechanistic point-of-view. This book provides thorough coverage of the operating mechanisms and d...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, The Netherlands ; Cambridge, MA :
Elsevier,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Pincer-Metal Complexes
- Copyright Page
- Contents
- List of contributors
- Foreword
- Preface
- 1 Application of pincer metal complexes in catalytic transformations
- 1.1 Introduction
- 1.2 Dehydrogenation of ammonia borane and its derivatives
- 1.3 Dinitrogen activation using pincer ligands
- 1.3.1 Catalytic dinitrogen activation using Mo pincer catalyst
- 1.3.2 Catalytic dinitrogen activation using 3d metal pincer catalyst
- 1.3.3 Catalytic dinitrogen fixation using earlier transition metals (V, Ti, Zr)
- 1.3.4 N-X bond formation with metal nitride in pincer complexes
- 1.3.5 Catalytic silylation of dinitrogen using transition metal pincer complexes
- 1.4 Pincer complexes as hydrogenation catalyst
- 1.4.1 Ester hydrogenation
- 1.4.2 Amide hydrogenation
- 1.4.3 Hydrogenation of urea, carbamate, carbonate, and imides derivatives
- 1.4.4 Nitrile hydrogenation
- 1.4.5 Hydrogenation of alkynes
- 1.5 Coupling reaction: C-C bond formation reaction
- 1.5.1 Mizoroki-Heck reaction
- 1.5.2 Suzuki-Miyaura reaction
- 1.5.3 Sonogashira, Negishi, Kumada-Corriu, Stille cross-coupling
- 1.6 Redox-Active Pincer Complexes
- 1.7 Conclusion
- References
- 2 Pincer-group(8) and pincer-group(9) metal complexes for catalytic alkane dehydrogenation reactions
- 2.1 Introduction
- 2.1.1 Alkane dehydrogenation
- 2.2 Dehydrogenation reactions of alkane using pincer-Ir complexes
- 2.2.1 Initial reports based on pincer-Ir catalysts
- 2.2.2 Alkane dehydrogenation by PC(sp2)P-Ir systems
- 2.2.3 Alkane dehydrogenation by PYC(sp2)ZP-Ir (Y=O, S, CH2) systems
- 2.2.4 Mechanism of pincer-Ir-catalyzed alkane dehydrogenation
- 2.2.5 Solid/gas-phase alkane dehydrogenation
- 2.2.6 Continuous-flow gas-phase alkane dehydrogenation
- 2.2.7 Alkane dehydrogenation by PC(sp3)P-Ir complexes
- 2.2.8 Alkane dehydrogenation by POCN-Ir, PBP-Ir, PNP-Ir, and PAlP complexes
- 2.2.9 Alkane dehydrogenation by PXC(sp2)NP-Ir-HCl (X=O, S) complexes
- 2.2.10 Alkane dehydrogenation by non-phosphine-based iridium pincer complexes
- 2.3 Dehydrogenation of alkanes by pincer-metal complexes other than iridium
- 2.3.1 Ruthenium pincer complexes for alkane dehydrogenation
- 2.3.2 Osmium pincer complexes for alkane dehydrogenation
- 2.3.3 Rhodium pincer complexes for alkane dehydrogenation
- 2.4 Applications of alkane dehydrogenation
- 2.4.1 Alkane metathesis
- 2.4.2 Alkane coupling
- 2.4.3 Synthesis of aromatics
- 2.4.3.1 Dehydroaromatization
- 2.4.3.2 Cyclodimerization
- 2.4.3.3 Alkyl group cross metathesis
- 2.4.3.4 Alkyl-aryl coupling
- 2.4.4 Functionalization of alkanes
- 2.4.4.1 Silylation and borylation
- 2.4.4.2 Formylation and aminomethylation
- 2.5 Summary and outlook
- References
- 3 Transition metal-catalyzed dehydrogenation of methanol and related transformations
- 3.1 Introduction