Cargando…

Porous carbons : syntheses and applications /

Carbon materials form pores ranging in size and morphology, from micropores of less than 1nm, to macropores of more than 50nm, and from channel-like spaces with homogenous diameters in carbon nanotubes, to round spaces in various fullerene cages, including irregularly-shaped pores in polycrystalline...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Inagaki, Michio
Otros Autores: Kang, Feiyu, Itoi, Hiroyuki
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • POROUS CARBONS
  • POROUS CARBONS: Syntheses and Applications
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • 1
  • Introduction
  • 1.1 Carbon materials
  • 1.1.1 Classification of carbon materials
  • 1.1.2 Structure and nanotexture of carbon materials
  • 1.1.3 Carbonization and graphitization
  • 1.2 Pores in carbon materials
  • 1.3 Identification and evaluation of pores in carbons
  • 1.3.1 Gas adsorption
  • 1.3.2 Mercury porosimetry
  • 1.3.3 Microscopy techniques and image processing
  • 1.4 Purposes and construction of this book
  • 1.5 Abbreviations of technical terms employed
  • References
  • 2
  • Syntheses of porous carbons
  • 2.1 Microporous carbons
  • 2.1.1 Activation
  • 2.1.1.1 Physical activation
  • 2.1.1.2 Chemical activation
  • 2.1.1.3 Activated carbon fibers
  • 2.1.2 Template-assisted carbonization
  • 2.1.2.1 Zeolites
  • 2.1.2.2 Other hard templates
  • 2.1.3 Precursor design
  • 2.1.3.1 Polymer blending
  • 2.1.3.1.1 Polyvinylpyrrolidone
  • 2.1.3.1.2 Poly(methyl methacrylate)
  • 2.1.3.1.3 Poly(ethylene glycol)
  • 2.1.3.1.4 Poly(ethylene oxide)
  • 2.1.3.1.5 Poly(vinyl butyral)
  • 2.1.3.1.6 Pitches
  • 2.1.3.2 Molecular design
  • 2.1.3.2.1 Labile functional groups
  • 2.1.3.2.2 Defluorination
  • 2.1.3.2.3 Porous organic frameworks
  • 2.1.3.2.4 Metal carbides
  • 2.2 Mesoporous carbons
  • 2.2.1 Activation
  • 2.2.2 Template-assisted carbonization
  • 2.2.2.1 Silicas
  • 2.2.2.1.1 Mesoporous silicas
  • 2.2.2.1.2 Colloidal silicas
  • 2.2.2.2 Magnesium oxide
  • 2.2.2.3 Eutectic metal salts
  • 2.2.2.4 Other hard templates
  • 2.2.3 Precursor design
  • 2.2.3.1 Polymer blends
  • 2.2.3.1.1 Block copolymers
  • 2.2.3.1.2 Poly(ethylene glycol)
  • 2.2.3.1.3 Poly(methyl methacrylate)
  • 2.2.3.1.4 Poly(vinyl butyral)
  • 2.2.3.1.5 Melamine
  • 2.2.3.2 Metal organic and covalent organic frameworks
  • 2.2.3.3 Carbon aerogels
  • 2.2.3.4 Ionic liquids
  • 2.2.3.5 Others
  • 2.3 Macroporous carbons
  • 2.3.1 Carbonization with blowing
  • 2.3.1.1 Pyrolysis under pressure
  • 2.3.1.2 Addition of blowing agents
  • 2.3.1.3 Self-blowing
  • 2.3.2 Template-assisted carbonization
  • 2.3.3 Precursor design
  • 2.3.3.1 Polymer blend
  • 2.3.3.2 Exfoliation of graphite oxides
  • 2.3.4 Graphene foams
  • 2.3.4.1 Assemblage of reduced graphene oxide
  • 2.3.4.1.1 Hydrothermal treatment
  • 2.3.4.1.2 Freeze-drying
  • 2.3.4.1.3 Templating
  • 2.3.4.1.4 Solvent evaporation
  • 2.3.4.1.5 Cross-linking
  • 2.3.4.1.6 3D-printing
  • 2.3.4.2 Assemblage of graphene nanoflakes
  • 2.3.5 Assemblage of carbon nanotubes
  • 2.3.6 Other processes
  • 2.4 Hierarchically porous carbons
  • 2.4.1 Carbonization with dual assistances
  • 2.4.2 Carbonization process design
  • 2.4.3 Inheritance of precursor texture
  • References
  • 3 . Porous carbons for energy storage and conversion
  • 3.1 Rechargeable batteries
  • 3.1.1 Intercalation-type lithium-ion batteries
  • 3.1.1.1 Graphitized carbons