Porous carbons : syntheses and applications /
Carbon materials form pores ranging in size and morphology, from micropores of less than 1nm, to macropores of more than 50nm, and from channel-like spaces with homogenous diameters in carbon nanotubes, to round spaces in various fullerene cages, including irregularly-shaped pores in polycrystalline...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- POROUS CARBONS
- POROUS CARBONS: Syntheses and Applications
- Copyright
- Contents
- Preface
- Acknowledgments
- 1
- Introduction
- 1.1 Carbon materials
- 1.1.1 Classification of carbon materials
- 1.1.2 Structure and nanotexture of carbon materials
- 1.1.3 Carbonization and graphitization
- 1.2 Pores in carbon materials
- 1.3 Identification and evaluation of pores in carbons
- 1.3.1 Gas adsorption
- 1.3.2 Mercury porosimetry
- 1.3.3 Microscopy techniques and image processing
- 1.4 Purposes and construction of this book
- 1.5 Abbreviations of technical terms employed
- References
- 2
- Syntheses of porous carbons
- 2.1 Microporous carbons
- 2.1.1 Activation
- 2.1.1.1 Physical activation
- 2.1.1.2 Chemical activation
- 2.1.1.3 Activated carbon fibers
- 2.1.2 Template-assisted carbonization
- 2.1.2.1 Zeolites
- 2.1.2.2 Other hard templates
- 2.1.3 Precursor design
- 2.1.3.1 Polymer blending
- 2.1.3.1.1 Polyvinylpyrrolidone
- 2.1.3.1.2 Poly(methyl methacrylate)
- 2.1.3.1.3 Poly(ethylene glycol)
- 2.1.3.1.4 Poly(ethylene oxide)
- 2.1.3.1.5 Poly(vinyl butyral)
- 2.1.3.1.6 Pitches
- 2.1.3.2 Molecular design
- 2.1.3.2.1 Labile functional groups
- 2.1.3.2.2 Defluorination
- 2.1.3.2.3 Porous organic frameworks
- 2.1.3.2.4 Metal carbides
- 2.2 Mesoporous carbons
- 2.2.1 Activation
- 2.2.2 Template-assisted carbonization
- 2.2.2.1 Silicas
- 2.2.2.1.1 Mesoporous silicas
- 2.2.2.1.2 Colloidal silicas
- 2.2.2.2 Magnesium oxide
- 2.2.2.3 Eutectic metal salts
- 2.2.2.4 Other hard templates
- 2.2.3 Precursor design
- 2.2.3.1 Polymer blends
- 2.2.3.1.1 Block copolymers
- 2.2.3.1.2 Poly(ethylene glycol)
- 2.2.3.1.3 Poly(methyl methacrylate)
- 2.2.3.1.4 Poly(vinyl butyral)
- 2.2.3.1.5 Melamine
- 2.2.3.2 Metal organic and covalent organic frameworks
- 2.2.3.3 Carbon aerogels
- 2.2.3.4 Ionic liquids
- 2.2.3.5 Others
- 2.3 Macroporous carbons
- 2.3.1 Carbonization with blowing
- 2.3.1.1 Pyrolysis under pressure
- 2.3.1.2 Addition of blowing agents
- 2.3.1.3 Self-blowing
- 2.3.2 Template-assisted carbonization
- 2.3.3 Precursor design
- 2.3.3.1 Polymer blend
- 2.3.3.2 Exfoliation of graphite oxides
- 2.3.4 Graphene foams
- 2.3.4.1 Assemblage of reduced graphene oxide
- 2.3.4.1.1 Hydrothermal treatment
- 2.3.4.1.2 Freeze-drying
- 2.3.4.1.3 Templating
- 2.3.4.1.4 Solvent evaporation
- 2.3.4.1.5 Cross-linking
- 2.3.4.1.6 3D-printing
- 2.3.4.2 Assemblage of graphene nanoflakes
- 2.3.5 Assemblage of carbon nanotubes
- 2.3.6 Other processes
- 2.4 Hierarchically porous carbons
- 2.4.1 Carbonization with dual assistances
- 2.4.2 Carbonization process design
- 2.4.3 Inheritance of precursor texture
- References
- 3 . Porous carbons for energy storage and conversion
- 3.1 Rechargeable batteries
- 3.1.1 Intercalation-type lithium-ion batteries
- 3.1.1.1 Graphitized carbons