|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1285170564 |
003 |
OCoLC |
005 |
20231120010615.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211113s2021 cau o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OPELS
|d OCLCO
|d OCLCF
|d OCLCO
|d UKMGB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC217036
|2 bnb
|
016 |
7 |
|
|a 020434724
|2 Uk
|
019 |
|
|
|a 1283950854
|a 1284287336
|a 1284837645
|a 1284875589
|
020 |
|
|
|a 9780128221532
|
020 |
|
|
|a 0128221534
|
020 |
|
|
|z 9780128221150
|q (print)
|
020 |
|
|
|z 0128221151
|q (print)
|
035 |
|
|
|a (OCoLC)1285170564
|z (OCoLC)1283950854
|z (OCoLC)1284287336
|z (OCoLC)1284837645
|z (OCoLC)1284875589
|
050 |
|
4 |
|a TA418.9.P6
|
082 |
0 |
4 |
|a 620.116
|2 23
|
100 |
1 |
|
|a Inagaki, Michio.
|
245 |
1 |
0 |
|a Porous carbons :
|b syntheses and applications /
|c Michio Inagaki, Hiroyuki Itoi and Feiyu Kang.
|
260 |
|
|
|a San Diego :
|b Elsevier,
|c 2021.
|
300 |
|
|
|a 1 online resource (874 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- POROUS CARBONS -- POROUS CARBONS: Syntheses and Applications -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 -- Introduction -- 1.1 Carbon materials -- 1.1.1 Classification of carbon materials -- 1.1.2 Structure and nanotexture of carbon materials -- 1.1.3 Carbonization and graphitization -- 1.2 Pores in carbon materials -- 1.3 Identification and evaluation of pores in carbons -- 1.3.1 Gas adsorption -- 1.3.2 Mercury porosimetry -- 1.3.3 Microscopy techniques and image processing -- 1.4 Purposes and construction of this book
|
505 |
8 |
|
|a 1.5 Abbreviations of technical terms employed -- References -- 2 -- Syntheses of porous carbons -- 2.1 Microporous carbons -- 2.1.1 Activation -- 2.1.1.1 Physical activation -- 2.1.1.2 Chemical activation -- 2.1.1.3 Activated carbon fibers -- 2.1.2 Template-assisted carbonization -- 2.1.2.1 Zeolites -- 2.1.2.2 Other hard templates -- 2.1.3 Precursor design -- 2.1.3.1 Polymer blending -- 2.1.3.1.1 Polyvinylpyrrolidone -- 2.1.3.1.2 Poly(methyl methacrylate) -- 2.1.3.1.3 Poly(ethylene glycol) -- 2.1.3.1.4 Poly(ethylene oxide) -- 2.1.3.1.5 Poly(vinyl butyral) -- 2.1.3.1.6 Pitches
|
505 |
8 |
|
|a 2.1.3.2 Molecular design -- 2.1.3.2.1 Labile functional groups -- 2.1.3.2.2 Defluorination -- 2.1.3.2.3 Porous organic frameworks -- 2.1.3.2.4 Metal carbides -- 2.2 Mesoporous carbons -- 2.2.1 Activation -- 2.2.2 Template-assisted carbonization -- 2.2.2.1 Silicas -- 2.2.2.1.1 Mesoporous silicas -- 2.2.2.1.2 Colloidal silicas -- 2.2.2.2 Magnesium oxide -- 2.2.2.3 Eutectic metal salts -- 2.2.2.4 Other hard templates -- 2.2.3 Precursor design -- 2.2.3.1 Polymer blends -- 2.2.3.1.1 Block copolymers -- 2.2.3.1.2 Poly(ethylene glycol) -- 2.2.3.1.3 Poly(methyl methacrylate)
|
505 |
8 |
|
|a 2.2.3.1.4 Poly(vinyl butyral) -- 2.2.3.1.5 Melamine -- 2.2.3.2 Metal organic and covalent organic frameworks -- 2.2.3.3 Carbon aerogels -- 2.2.3.4 Ionic liquids -- 2.2.3.5 Others -- 2.3 Macroporous carbons -- 2.3.1 Carbonization with blowing -- 2.3.1.1 Pyrolysis under pressure -- 2.3.1.2 Addition of blowing agents -- 2.3.1.3 Self-blowing -- 2.3.2 Template-assisted carbonization -- 2.3.3 Precursor design -- 2.3.3.1 Polymer blend -- 2.3.3.2 Exfoliation of graphite oxides -- 2.3.4 Graphene foams -- 2.3.4.1 Assemblage of reduced graphene oxide -- 2.3.4.1.1 Hydrothermal treatment
|
505 |
8 |
|
|a 2.3.4.1.2 Freeze-drying -- 2.3.4.1.3 Templating -- 2.3.4.1.4 Solvent evaporation -- 2.3.4.1.5 Cross-linking -- 2.3.4.1.6 3D-printing -- 2.3.4.2 Assemblage of graphene nanoflakes -- 2.3.5 Assemblage of carbon nanotubes -- 2.3.6 Other processes -- 2.4 Hierarchically porous carbons -- 2.4.1 Carbonization with dual assistances -- 2.4.2 Carbonization process design -- 2.4.3 Inheritance of precursor texture -- References -- 3 . Porous carbons for energy storage and conversion -- 3.1 Rechargeable batteries -- 3.1.1 Intercalation-type lithium-ion batteries -- 3.1.1.1 Graphitized carbons
|
500 |
|
|
|a 3.1.1.2 Nongraphitized carbons.
|
520 |
|
|
|a Carbon materials form pores ranging in size and morphology, from micropores of less than 1nm, to macropores of more than 50nm, and from channel-like spaces with homogenous diameters in carbon nanotubes, to round spaces in various fullerene cages, including irregularly-shaped pores in polycrystalline carbon materials. The large quantity and rapid rate of absorption of various molecules made possible by these attributes of carbon materials are now used in the storage of foreign atoms and ions for energy storage, conversion and adsorption, and for environmental remediation. Porous Carbons: Syntheses and Applications focuses on the fabrication and application of porous carbons. It considers fabrication at three scales: micropores, mesopores, and macropores. Carbon foams, sponges, and 3D-structured carbons are detailed. The title presents applications in four key areas: energy storage, energy conversion, energy adsorption, including batteries, supercapacitors, and fuel cells and environmental remediation, emphasizing the importance of pore structures at the three scales, and the diffusion and storage of various ions and molecules. The book presents a short history of each technique and material, and assesses advantages and disadvantages. This focused book provides researchers with a comprehensive understanding of both pioneering and current synthesis techniques for porous carbons, and their modern applications.
|
650 |
|
0 |
|a Porous materials.
|
650 |
|
0 |
|a Carbon.
|
650 |
|
2 |
|a Carbon
|0 (DNLM)D002244
|
650 |
|
6 |
|a Carbone.
|0 (CaQQLa)201-0007763
|
650 |
|
7 |
|a Carbon
|2 fast
|0 (OCoLC)fst00846775
|
650 |
|
7 |
|a Porous materials
|2 fast
|0 (OCoLC)fst01071907
|
700 |
1 |
|
|a Kang, Feiyu.
|
700 |
1 |
|
|a Itoi, Hiroyuki.
|
776 |
0 |
8 |
|i Print version:
|a Kang, Feiyu.
|t Porous Carbons.
|d San Diego : Elsevier, �2021
|z 9780128221150
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128221150
|z Texto completo
|