Cargando…

Upconversion Nanophosphors /

Upconversion Nanophosphors provides detailed information about various lanthanide-based upconversion nanoparticles and their application in different fields. It will also help solve fundamental and applied problems of inorganic phosphor materials showing upconversion behavior, as well as generate in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Thomas, Sabu (Editor ), Upadhyay, Kanchan (Editor ), Tamrakar, Raunak Kumar (Editor ), Kalarikkal, Nandakumar (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge, MA : Elsevier, [2022]
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • 1
  • Photoluminescent rare-earth nanocrystal-based characterization methods: Advancements in photophysical applications
  • 1.1 Introduction
  • 1.2 Diffused reflectance spectroscopy
  • 1.3 Photoluminescence spectroscopy
  • 1.4 Down-conversion
  • 1.5 A mechanism of down-conversion
  • 1.6 Upconversion
  • 1.6.1 Upconversion mechanisms and properties
  • 1.6.1.1 Upconversion phosphor system
  • 1.6.2 Host lattice
  • 1.6.3 Dopant system
  • 1.7 Photoluminescence quantum yield
  • 1.8 Challenges and future perspectives
  • References
  • 2
  • What are upconversion nanophosphors: Basic concepts and mechanisms
  • 2.1 Introduction
  • 2.2 Fundamental concepts of photon upconversion
  • 2.2.1 Optical properties of rare-earth ions
  • 2.2.2 Dopant ions: activators and sensitizers
  • 2.2.3 Host material
  • 2.2.4 Modulation of upconversion emissions
  • 2.2.4.1 Controlling Ln 3+ doping concentration
  • 2.2.4.2 Introducing multiple activators
  • 2.2.4.3 Screening the host matrix
  • 2.2.4.4 Luminescence resonance energy transfer
  • 2.3 Upconversion mechanisms
  • 2.4 Excited-state dynamics
  • 2.5 Basic understanding of photophysics
  • 2.6 Applications
  • 2.6.1 Bio-imaging
  • 2.6.2 Bio-sensing and detection
  • 2.6.3 Drug delivery and therapy
  • 2.6.4 Security printing
  • 2.6.5 Thermographic phosphors
  • 2.7 Conclusions
  • References
  • 3
  • Physics of inorganic upconverting nanophosphors and their relevance in applications
  • 3.1 Introduction
  • 3.1.1 Background knowledge and nomenclature
  • 3.1.2 From the Stokes principle to upconversion
  • 3.1.3 Rare-earth elements
  • 3.2 Inorganic phosphors: Hosts and dopants
  • 3.2.1 Host crystals
  • 3.2.2 Activator and sensitizer ions
  • 3.3 Building-block ion-ion interaction mechanisms
  • 3.3.1 Energy transfer
  • 3.3.2 Cross-relaxation
  • 3.3.3 Luminescence quenching
  • 3.4 Upconversion: Fundamentals and dynamics
  • 3.4.1 Mechanisms/pathways leading to upconversion emission
  • 3.4.2 Examples
  • 3.4.2.1 Single doping: Er 3+ ion
  • 3.4.2.2 Co-doping: Yb 3+ -Er 3+ and Yb 3+ -Tm 3+ pairs
  • 3.5 Nanoupconverters
  • 3.5.1 Introduction and relevant applications
  • 3.5.2 Spatial-confinement-related phenomena/effects
  • 3.5.3 Quenching effects
  • 3.5.4 Core-shell architectures
  • 3.5.5 Excited state dynamics
  • 3.6 Conclusions
  • References
  • 4
  • Upconversion photoluminescence properties of ZrO 2 : Ln 3+ /Yb 3+ (Ln = Er, Ho, Tm) films formed by plasma electrolyt ...
  • 4.1 Introduction
  • 4.2 Experimental section
  • 4.2.1 Sample preparation
  • 4.2.2 Measurements and characterization
  • 4.3 Results and discussion
  • 4.3.1 Morphology, chemical, and phase composition of ZrO 2 :Ln 3+ /Yb 3+ films
  • 4.3.2 Upconversion PL of ZrO 2 :Er 3+ /Yb 3+ films
  • 4.3.3 Upconversion PL of ZrO 2 :Ho 3+ /Yb 3+ films
  • 4.3.4 Upconversion PL of ZrO 2 :Tm 3+ /Yb 3+ films