Cargando…

Tensors for Data Processing Theory,Methods, and Applications.

Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Yipeng
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego, UNITED STATES Academic Press 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 SCIDIR_on1284778499
003 OCoLC
005 20231120010614.0
006 m d
007 cr |n|||||||||
008 211101s2021 xx o ||| 0 eng d
040 |a CNMON  |b fre  |c CNMON  |d OCLCO  |d OPELS  |d OCLCO  |d OCLCQ 
019 |a 1283495620  |a 1284778571 
020 |a 012824447X  |q (Paper) 
020 |a 9780128244470 
020 |a 9780323859653  |q (Proquest Ebook Central) 
020 |a 0323859658 
035 |a (OCoLC)1284778499  |z (OCoLC)1283495620  |z (OCoLC)1284778571 
050 4 |a QA76.9.M35 
082 0 4 |a 004  |2 23 
100 1 |a Liu, Yipeng. 
245 1 0 |a Tensors for Data Processing  |h [ressource� lectronique] :  |b Theory,Methods, and Applications. 
260 |a San Diego, UNITED STATES  |b Academic Press  |c 2021. 
300 |a 1 online resource (1 ressource en ligne (598)) 
336 |a texte  |b txt  |2 rdacontent 
337 |a informatique  |b c  |2 rdamedia 
338 |a ressource en ligne  |b cr  |2 rdacarrier 
588 |a Description ba�se sur la version papier. 
520 |a Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. 
650 0 |a Tensor algebra  |x Data processing. 
650 6 |a Alg�ebre tensorielle  |0 (CaQQLa)201-0219788  |x Informatique.  |0 (CaQQLa)201-0380011 
655 7 |a e-books.  |2 aat  |0 (CStmoGRI)aatgf300265554 
655 7 |a Livres num�eriques.  |2 rvmgf  |0 (CaQQLa)RVMGF-000000267 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128244470  |z Texto completo