Cargando…

Flow-induced alignment in composite materials.

The purpose of aligning short fibers in a fiber-reinforced material is to improve the mechanical properties of the resulting composite. Aligning the fibers, generally in a preferred direction, allows them to contribute as much as possible to reinforcing the material. The first edition of this book d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Papathanasiou, T. D. (Editor ), B�enard, Andr�e, 1964- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Woodhead Publishing, [2022]
Edición:Second edition /
Colección:Woodhead Publishing series in composites science and engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Flow-Induced Alignment in Composite Materials
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Flow-induced alignment in composite materials: an update on current applications and future prospects
  • 1.1 A brief survey of composites
  • 1.1.1 Composite materials over the years
  • 1.1.2 An overview of aligned-fiber composites
  • 1.1.3 Benefits of aligned short-fiber reinforcements
  • 1.1.4 Flow-induced fiber alignment
  • 1.1.5 Applications of aligned-fiber composites
  • 1.1.6 Types of reinforcements
  • 1.1.7 Processing issues in aligned-fiber composites
  • 1.2 Flow processes for producing aligned-fiber polymer-matrix composites
  • 1.2.1 Processing of thermoplastic polymer composites
  • 1.2.1.1 Injection molding of thermoplastics
  • 1.2.1.2 Extrusion
  • 1.2.1.3 Sheet forming
  • 1.2.2 Thermosets
  • 1.2.3 Aligned-fiber mats
  • 1.2.4 Blends of liquid crystal polymers and thermoplastics
  • 1.3 Flow processes for producing aligned-fiber metal-matrix composites
  • 1.4 Flow processes for producing aligned-fiber ceramic-matrix composites
  • 1.5 Future prospects
  • References
  • 2 Fiber-fiber and fiber-wall interactions during the flow of nondilute suspensions
  • 2.1 Introduction
  • 2.2 Single fiber motion
  • 2.3 Orientation characterization
  • 2.4 Fiber-fiber interactions
  • 2.4.1 Early work
  • 2.4.2 Diffusion models
  • 2.4.3 Slender body theory-based solution
  • 2.4.4 Stokesian dynamics
  • 2.4.5 Computer simulations/full numerical solutions
  • 2.5 Concentrated suspensions
  • 2.6 Fiber-wall interactions
  • 2.7 Summary and outlook
  • References
  • 3 Closure models for flow-induced alignment of particles of nearly arbitrary shapes
  • 3.1 Introduction
  • 3.2 Flow-induced alignment of spheroidal particles
  • 3.2.1 The orientation distribution function and the method of moments.
  • 3.2.2 Orientation distribution function for spheroidal particles
  • 3.2.3 The moment equation for the orientation dyadic and the closure problem
  • 3.2.4 The fully symmetric quadratic closure model
  • 3.3 Orientation of ensembles of particles of arbitrary shape: Rallison's approach
  • 3.3.1 Algebraic properties of the fourth moment for particles with arbitrary shape
  • 3.3.2 The proposed closure model for ensembles of particles of nearly arbitrary shape
  • 3.4 Summary and conclusion
  • References
  • 4 Macroscopic modeling of the evolution of fiber orientation during flow
  • 4.1 Introduction
  • 4.2 Experimental observations
  • 4.3 Basic theoretical background
  • 4.3.1 A statistical approach
  • 4.3.2 Jeffery and Folgar-Tucker equations
  • 4.3.3 Evolution equations for the orientation of a population of fibers
  • 4.3.4 Closure approximations
  • 4.3.4.1 Linear, quadratic, and hybrid closures
  • 4.3.4.2 Eigenvalue-based optimal fitting closures
  • 4.3.4.3 Invariant-based closures
  • 4.3.4.4 Other approximation closures
  • 4.3.5 Rheological constitutive equation
  • 4.3.5.1 Slender ellipsoids
  • 4.3.5.2 Slender-body theory
  • 4.4 Recent improvement in fiber suspension modeling
  • 4.4.1 Models for slow down fiber orientation kinetics
  • 4.4.1.1 Reduced-strain closure model
  • 4.4.1.2 Retarding principal rate model
  • 4.4.2 Anisotropic rotary diffusion models
  • 4.4.2.1 General framework
  • 4.4.2.2 Model for the rotary diffusion tensor
  • 4.4.3 Fiber suspension modeling in non-Newtonian fluids
  • 4.4.4 Informed ISOtropic viscosity
  • 4.4.4.1 Importance of coupled solutions
  • 4.4.4.2 Informed ISOtropic viscosity framework
  • 4.4.5 Semiflexible fiber suspension modeling
  • 4.5 Some process models
  • 4.5.1 Elements of fluid mechanics
  • 4.5.2 Extrusion and fused deposition modeling
  • 4.5.3 Injection molding
  • 4.5.4 Compression molding.
  • 4.6 Concluding remarks
  • References
  • 5 Flow-induced alignment in injection molding of fiber-reinforced polymer composites
  • 5.1 Introduction
  • 5.2 The injection molding process
  • 5.2.1 Overview
  • 5.2.2 Modeling of mold filling
  • 5.2.3 Velocity profiles in mold filling
  • 5.2.3.1 Gap-wise velocity profiles
  • 5.2.3.2 Planar velocities
  • 5.2.3.3 Fountain flow
  • 5.3 Experimental observations of fiber orientation in injection molding
  • 5.3.1 Filling patterns with fiber-reinforced melts
  • 5.3.2 Skin-core structure
  • 5.3.2.1 Influence of the injection gate
  • 5.3.2.2 Effect of injection speed
  • 5.3.2.3 Effect of wall solidification
  • 5.3.2.4 Effect of cavity thickness
  • 5.3.2.5 Effect of cavity wall temperature
  • 5.3.2.6 Effect of melt rheology
  • 5.3.3 Fiber orientation around weldlines
  • 5.3.4 Other influences
  • 5.3.4.1 Edge-effects
  • 5.3.4.2 Fiber depletion and fiber segregation
  • 5.3.4.3 Fiber orientation in the sprue
  • 5.3.4.4 Effect of packing
  • 5.3.4.5 Long fibers
  • 5.3.4.6 Effect of fiber concentration
  • 5.4 Prediction of fiber orientation in injection molding
  • 5.4.1 Modeling strategies: prediction of fiber orientation
  • 5.4.1.1 Jeffery's model for noninteracting fibers
  • 5.4.1.2 Rotary diffusion models
  • 5.4.1.3 Use of orientation tensors
  • 5.4.2 Modeling strategies: effects of fibers on flow kinematics
  • 5.4.3 Parametric sensitivity analysis
  • 5.4.3.1 Effect of fountain flow on fiber orientation predictions
  • 5.4.3.2 Effect of the interaction parameter on fiber orientation predictions
  • 5.4.3.3 Choice of inlet orientation
  • 5.4.3.4 Prediction of fiber orientation around weldlines
  • 5.5 Conclusions
  • References
  • 6 Control and manipulation of fiber orientation in large-scale processing
  • 6.1 Introduction
  • 6.2 Application of SCORIM for weldline strength enhancement.
  • 6.2.1 Copolyester liquid crystal polymer containing glass fibers
  • 6.2.2 High temperature cure dough molding compound
  • 6.3 Application of SCORIM for physical property enhancement
  • 6.3.1 Glass fiber-reinforced polypropylene
  • 6.3.2 Glass fiber filled copolyester
  • 6.3.2.1 Fiber orientation in SCORIM plaques
  • 6.3.2.2 Young's modulus measurements
  • 6.3.2.3 Linear thermal expansion of moldings
  • 6.4 Control of porosity in thick-section moldings
  • 6.4.1 Control of porosity and fiber orientation in a variable cross-section bar
  • 6.4.2 Molding and characterization of a thick-section molding representing an actuation support structure
  • 6.4.2.1 Molding procedures
  • 6.4.2.2 Characterization of moldings
  • 6.5 Control of fiber orientation in a selection of mold geometries
  • 6.5.1 Injection molded plaque
  • 6.5.2 Injection molded fin
  • 6.5.3 Multicavity SCORIM for the production of molded rings
  • 6.6 Extensions of the shear controlled orientation concept
  • Addendum: Control and manipulation of fiber orientation in large-scale processing
  • References
  • 7 Theory and simulation of flow-induced microstructures in liquid crystalline materials
  • 7.1 Introduction
  • 7.1.1 Liquid crystalline materials
  • 7.1.2 Liquid crystal polymers
  • 7.1.3 Main- and side-chain liquid crystalline polymers
  • 7.1.4 Biological liquid crystalline materials
  • 7.2 Flow modeling of liquid crystalline materials
  • 7.2.1 Theory and simulation
  • 7.3 Single component nematics
  • 7.3.1 Leslie Ericksen nematodynamics
  • 7.3.2 Quadrupolar order parameter
  • 7.3.3 Nematodynamics
  • 7.3.4 Landau de Gennes nematodynamics
  • 7.4 Binary nematic mixtures
  • 7.4.1 Leslie-Ericksen constitutive equation
  • 7.4.1.1 Macroscopic dynamics of homogeneous binary nematic mixtures
  • 7.4.1.2 Rate of entropy production for nematic mixtures.